已知圓C的圓心為原點O,且與直線x+y+4
2
=0
相切.
(1)求圓C的方程;
(2)點P在直線x=8上,過P點引圓C的兩條切線PA,PB,切點為A,B,求證:直線AB恒過定點.

(本小題滿分14分)
(1)依題意得:圓心(0,0)到直線x+y+4
2
=0
的距離d=r,
∴d=r=
4
2
1+1
=4
,---(2分)
所以圓C的方程為x2+y2=16①;-----(4分)
(2)連接OA,OB,
∵PA,PB是圓C的兩條切線,
∴OA⊥AP,OB⊥BP,------(5分)
∴A,B在以O(shè)P為直徑的圓上,-------(6分)
設(shè)點P的坐標為(8,b),b∈R,
則線段OP的中點坐標為(4,
b
2
)
,------(8分)
∴以O(shè)P為直徑的圓方程為(x-4)2+(y-
b
2
)2=42+(
b
2
)2,b∈R
,-----(10分)
化簡得:x2+y2-8x-by=0②,b∈R,------(11分)
∵AB為兩圓的公共弦,
∴①-②得:直線AB的方程為8x+by=16,b∈R,即8(x-2)+by=0,------(13分)
則直線AB恒過定點(2,0).-------(14分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C:x2-2ax+y2-4y+a2=0(a>0)及直線l:x-y+3=0,當直線l被圓C截得的弦長為2
2
時.
(Ⅰ)求a的值;
(Ⅱ)求過點(3,5)并與圓C相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C:x2+y2+2x-4y=0,若圓C的切線在x軸和y軸上截距相等,求切線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C的方程為(x-1)2+(y-1)2=1,P點坐標為(2,3),求過P點的圓的切線方程以及切線長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過原點的直線與圓x2+y2+4x+3=0相切,若切點在第三象限,則該直線的方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

圓C:(x-1)2+(y-2)2=25內(nèi)有一點P(3,1),l為過點P且傾斜角為α的直線.
(1)若α=
4
,求直線l與圓C相交弦的弦長;
(2)求直線l被圓C截得的弦長度最短時,直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若實數(shù)x,y滿足(x-2)2+y2=3,設(shè)k=
y
x
,則實數(shù)k的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若直線y=x+b與曲線x=
4-y2
有兩個公共點,則實數(shù)b的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對任意的實數(shù)k,直線y=kx-1與圓x2+y2-2x-2=0的位置關(guān)系是( 。
A.相離B.相切
C.相交D.以上三個選項均有可能

查看答案和解析>>

同步練習冊答案