如圖,已知橢圓的上頂點為,右焦點為,直線與圓相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)若不過點的動直線與橢圓相交于、兩點,且求證:直線過定點,并求出該定點的坐標 

 


(Ⅰ)將圓的一般方程化為標準方程

,圓的圓心為,半徑.

,得直線,

,          

由直線與圓相切,得,

(舍去).  -----------------------------------2分

時,

故橢圓的方程為 ---------------------------------4分

(Ⅱ)(方法一)由,從而直線與坐標軸不垂直,

可設(shè)直線的方程為

直線的方程為.                                 

代入橢圓的方程

并整理得: ,-----------------------------------6分

解得,因此的坐標為,

  ------------------------------------------8分                        

將上式中的換成,得.     

直線的方程為

化簡得直線的方程為,      

因此直線過定點.     ---------------------------------12分              

 (方法二)由題直線的斜率存在,則可設(shè)直線的方程為:

,                

代入橢圓的方程并整理得:

,              

設(shè)直線與橢圓相交于、兩點,則是上述關(guān)于的方程兩個不相等的實數(shù)解,從而

            

,

整理得: .

       此時, 因此直線過定點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(14分)如圖,已知橢圓的上頂點為,右焦點為,直線與圓相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)若不過點的動直線與橢圓相交于、兩點,且求證:直線過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年安徽省高三第四次月考理科數(shù)學試卷(解析版) 題型:解答題

如圖,已知橢圓的上頂點為,離心率為,若不過點的動直線與橢圓相交于、兩點,且.

(Ⅰ)求橢圓的方程;

(Ⅱ)求證:直線過定點,并求出該定點的坐標.  

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年遼寧省高三上學期第三次月考理科數(shù)學試卷 題型:解答題

如圖,已知橢圓的上頂點為,右焦點為,直線與圓相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)若不過點的動直線與橢圓相交于兩點,且求證:直線過定點,并求出該定點的坐標.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省高三第二次月考理科數(shù)學試卷 題型:解答題

如圖,已知橢圓的上頂點為,右焦點為,直線與圓相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)若不過點的動直線與橢圓相交于、兩點,且求證:直線過定點,并求出該定點的坐標

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 (本小題滿分12分) 如圖,已知橢圓的上頂點為,右焦點為,直線與圓相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)若不過點的動直線與橢圓相交于兩點,

求證:直線過定點,并求出該定點的坐標.

查看答案和解析>>

同步練習冊答案