精英家教網 > 高中數學 > 題目詳情
求證:
1-2sin2xcos2x
cos22x-sin22x
=
1-tan2x
1+tan2x
分析:把左邊的分母中的1變?yōu)閟in22x+cos22x,所以分母能用完全平方公式分解因式,分子利用平方差公式分解因式,約分后,給分子分母都除以cos2x,即可得到與右邊相等.
解答:證明:左邊=
cos22x+sin22x-2sin2xcos2x
cos22x-sin22x

=
(sin2x-cos2x)2
(cos2x+sin2x)(cos2x-sin2x)

=
cos2x-sin2x
sin2x+cos2x

=
1-tan2x
1+tan2x
=右邊
點評:本題的突破點是“1”的靈活變形,要求學生會利用平方差和完全平方公式分解因式,會靈活運用同角三角函數間的基本關系化簡求值.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知:α,β為銳角,且3sin2α+2sin2β=1,3sin2α-2sin2β=0.求證:α+2β=
π2

查看答案和解析>>

科目:高中數學 來源: 題型:

求證:
1+sinα
1-2sin2
α
2
=
1+tan
α
2
1-tan
α
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)滿足f(x+y)=f(x)+f(y)對任意x、y∈R恒成立,在R上單調遞減.
(1)求證:f(x)是奇函數;
(2)若對一切x∈[
π
4
,
π
2
]
,關于x的不等式f[2sin2(
π
4
+x)]-f(
3
cos2x)-f(m)<0
恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

求證:
(1)
2sin(π+θ)•cosθ-1
1-2sin2θ
=
tan(9 π+θ)+1
tan(π+θ)-1
;
(2)
tanθ•sinθ
tanθ-sinθ
=
cosθ•(tanθ+sinθ)
sin2θ

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

求證:
1+sinα
1-2sin2
α
2
=
1+tan
α
2
1-tan
α
2

查看答案和解析>>

同步練習冊答案