已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1,F(xiàn)2,離心率為e.直線l:y=ex+a與x軸、y軸分別交于A,B兩點.
(1)求證:直線l與雙曲線C只有一個公共點;
(2)設(shè)直線l與雙曲線C的公共點為M,且
AM
AB
,證明:λ+e2=1;
(3)設(shè)P是點F1關(guān)于直線l的對稱點,當△PF1F2為等腰三角形時,求e的值.
分析:(1)首先求出A、B兩點坐標,然后聯(lián)立直線方程和雙曲線方程,并利用韋達定理得出只有一個公共點及坐標;
(2)根據(jù)點的坐標以及
AM
AB
,得出-
b2
a
=λa
,λ=-
b2
a2
=-
c2-a2
a2
=1-e2
,即可得出結(jié)論;
(3)分三種情況討論)(ⅰ)因為直線AB為F1P的中垂線,而F2不在直線AB上(點A與F2不重合)不符合題意;(ⅱ)當|F2F1|=|F1P|時,得出
|e(-c)+0+a|
1+e2
=c
,整理得e=
3
3
<1
,不符合題意;(ⅲ)當|PF2|=|PF1|時,設(shè)出p點坐標得出,kPF1=
yp
0-(-c)
=-
1
kAB
=-
a
c
,進而求出P點坐標和PF1的中點坐標代入直線方程即可求出e.
解答:解:(1)證明:因為A、B分別是直線l:y=ex+a與x軸、y軸的交點,
所以點A、B的坐標分別是A(-
a2
c
 , 0)
,B(0,a),
y=ex+a
x2
a2
-
y2
b2
=1
整理得 x2+2cx+c2=0,解得
x=-c
y=-
b2
a
M(-c,-
b2
a
)
,
所以直線l與雙曲線C只有一個公共點、…(3分)
(2)因為
AM
AB
,所以(-c+
a2
c
,-
b2
a
)=λ(
a2
c
,a)

所以-
b2
a
=λa
λ=-
b2
a2
=-
c2-a2
a2
=1-e2
,即λ+e2=1…(6分)
(3)(。┮驗橹本AB為F1P的中垂線,而F2不在直線AB上(點A與F2不重合),
所以|F2F1|≠|(zhì)F2P|;…(7分)
(ⅱ)若|F2F1|=|F1P|,則
1
2
|F1P|=
1
2
|F1F2|
,
所以
|e(-c)+0+a|
1+e2
=c
,整理得3c2=a2,所以e=
3
3
<1
,不符合題意.…(9分)
(ⅲ)若|PF2|=|PF1|,則點P在y軸上,設(shè)P(0,yp),則kPF1=
yp
0-(-c)
=-
1
kAB
=-
a
c

所以yP=-a,即P(0,-a),
設(shè)N是PF1的中點,則N(-
c
2
,-
a
2
)
,代入直線l的方程,得-
a
2
=e(-
c
2
)+a
,
整理得c2=3a2,e2=3,所以e=
3
.…(12分)
綜上,當△PF1F2為等腰三角形時,e=
3
點評:本題主要考查了直線與圓錐曲線的綜合問題.直線與圓錐曲線聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關(guān)系的判定,弦長問題、最值問題、對稱問題、軌跡問題等.突出考查了數(shù)形結(jié)合、分類討論、函數(shù)與方程、等價轉(zhuǎn)化等數(shù)學思想方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•許昌三模)已知雙曲線c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距為c,過左焦點且斜率為1的直線與雙曲線C的左、右支各有一個交點,若拋物線y2=4cx的準線被雙曲線截得的線段長大于
2
2
3
be2.(e為雙曲線c的離心率),則e的取值范同是
2
,
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•寧波模擬)已知雙曲線
x2
a
-
y2
a2+a+1
=1
的離心率的范圍是數(shù)集M,設(shè)p:“k∈M”; q:“函數(shù)f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域為R”.則P是Q成立的( 。

查看答案和解析>>

科目:高中數(shù)學 來源:寧波模擬 題型:單選題

已知雙曲線
x2
a
-
y2
a2+a+1
=1
的離心率的范圍是數(shù)集M,設(shè)p:“k∈M”; q:“函數(shù)f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域為R”.則P是Q成立的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距為c,過左焦點且斜率為1的直線與雙曲線C的左、右支各有一個交點,若拋物線y2=4cx的準線被雙曲線截得的線段長大于
2
2
3
be2.(e為雙曲線c的離心率),則e的取值范同是______.

查看答案和解析>>

同步練習冊答案