【題目】如圖,設P1,P2,…,P6為單位圓上逆時針均勻分布的六個點.現(xiàn)任選其中三個不同點構(gòu)成一個三角形,記該三角形的面積為隨機變量S.

(1)求S=的概率;

(2)求S的分布列及數(shù)學期望E(S).

【答案】(1)(2)見解析

【解析】分析:(1)由古典概型的概率計算公式,能求出取出的三角形的面積S的概率;(2)由題設條S的所有可能取值為為,分別求出相應的概率,由此能求出隨機變量S的分布列及期望.

詳解(1)從六個點任選三個不同點構(gòu)成一個三角形共有種不同選法,

其中S=的為有一個角是30°的直角三角形(P1P4P5),共6×2=12種,

所以P(S=)=.

(2)S的所有可能取值為,.

S=的為頂角是120°的等腰三角形(P1P2P3),共6種,

所以P(S=)=.

S=的為等邊三角形(P1P3P5),共2種,

所以P(S=)=.

又由(1)知P(S=)=,故S的分布列為

S

P

所以E(S)=×××.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形中,,,四邊形

為矩形,平面平面,.

I)求證:平面;

II)點在線段上運動,設平面與平面所成二面角的平面角為,

試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若曲線的切線經(jīng)過點,求的方程;

(2)若方程有兩個不相等的實數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足an=2an1+2n+1(n∈N* , n≥2),a3=27.
(1)求a1 , a2的值;
(2)是否存在一個實數(shù)t,使得bn= (an+t)(n∈N*),且數(shù)列{bn}為等差數(shù)列?若存在,求出實數(shù)t;若不存在,請說明理由;
(3)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是定義在R上的函數(shù),對R都有,且當0時,<0,=1.

(1)求的值;

(2)求證:為奇函數(shù);

(3)求在[-2,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的各項都大于1,且a1=2,a ﹣an+1﹣a +1=0(n∈N*).
(1)求證: ≤an<an+1≤n+2;
(2)求證: + + +…+ <1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直四棱柱ABCD﹣A1B1C1D1底面是邊長為1的正方形,高AA1= ,點A是平面α內(nèi)的一個定點,AA1與α所成角為 ,點C1在平面α內(nèi)的射影為P,當四棱柱ABCD﹣A1B1C1D1按要求運動時(允許四棱柱上的點在平面α的同側(cè)或異側(cè)),點P所經(jīng)過的區(qū)域的面積=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為迎接2016年“猴”年的到來,某電視臺舉辦猜獎活動,參與者需先后回答兩道選擇題,問題A有三個選項,問題B有四個選項,每題只有一個選項是正確的,正確回答問題A可獲獎金1千元,正確回答問題B可獲獎金2千元.活動規(guī)定:參與者可任意選擇回答問題的順序,如果第一個問題回答正確,則繼續(xù)答題,否則該參與者猜獎活動終止.假設某參與者在回答問題前,選擇每道題的每個選項的機會是等可能的.
(Ⅰ)如果該參與者先回答問題A,求其恰好獲得獎金1千元的概率;
(Ⅱ)試確定哪種回答問題的順序能使該參與者獲獎金額的期望值較大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在區(qū)間上有最大值和最小值.

(1)求的值;

(2)設,

證明:對任意實數(shù),函數(shù)的圖象與直線最多只有一個交點;

(3)設,是否存在實數(shù)m和nm<n,使的定義域和值域分別為,如果存在,求出m和n的值.若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案