在△ABC中,角A,B,C的對邊分別為a,b,c.
(1)若cos(A+
π
6
)=sinA,求A的值;
(2)若cosA=
1
4
,4b=c,求sinB的值.
(1)在△ABC中,若cos(A+
π
6
)=sinA,則有 cosAcos
π
6
-sinAsin
π
6
=sinA,
化簡可得
3
2
cosA=
3
2
sinA,顯然,cosA≠0,故 tanA=
3
3
,所以A=
π
6

(2)若cosA=
1
4
,4b=c,由余弦定理可得 a2=b2+c2-2bc•cosA,解得 a=
15
b.
由于sinA=
1-cos2A
=
15
4
,再由正弦定理可得
15
b
sinA
b
sinB
,解得sinB=
1
4
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大。
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊答案