已知兩定點F1(-5,0)、F2(5,0),求與F1、F2的距離的差的絕對值為6的點P的軌跡方程.
解:由題意知,所求點P的軌跡是以F1、F2為焦點的雙曲線,設其方程為-=1(a>0,b>0),且a=3,c=5,∴b=4,所以點P的軌跡方程是-=1. 想一想:若將條件中的“6”改為“10”,其余條件不變,結果如何? 解:若將條件中的“6”改為“10”,則點P的軌跡是兩條射線,其方程為y=0(x≤-5或x≥5). 若將題目中的“絕對值”的條件去掉,其余條件不變,結果又如何? 解:若是|PF1|-|PF2|=6,則點P的軌跡是靠近焦點F2的雙曲線的一支;若是|PF2|-|PF1|=6,則點P的軌跡是靠近焦點F1的雙曲線的一支. 分析:根據(jù)雙曲線的定義可知,動點P的軌跡是以F1、F2為焦點的雙曲線,又由焦點的位置可知,所求的軌跡方程是雙曲線的標準方程. |
科目:高中數(shù)學 來源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年陜西省西安一中高二(上)期末數(shù)學試卷(文科)(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com