在棱長為4的正方體ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,點P在棱CC1上,且CC1=4CP.

(Ⅰ)求直線AP與平面BCC1B1所成的角的大小(結(jié)果用反三角函數(shù)值表示);

(Ⅱ)設(shè)O點在平面D1AP上的射影是H,求證:D1H⊥AP;

(Ⅲ)求點P到平面ABD1的距離.

答案:
解析:

  解:(1)即為所求直線AP與平面BCC1B1所成

  的角,所以直線AP與平面BCC1B1

  所成的角為

  (2)由平面,從而有D1H⊥AP.

  (3)作即為所求點P到平面ABD1的距離,易求

  (也可以用向量法解決)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在棱長為4的正方體ABCD-A1B1C1D1中,點E是棱CC1的中點.
(I)求三棱錐D1-ACE的體積;
(II)求異面直線D1E與AC所成角的余弦值;
(III)求二面角A-D1E-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為4的正方體ABCD-A′B′C′D′中,E、F分別是AD、A′D′的中點,長為2的線段MN的一個端點M在線段EF上運動,另一個端點N在底面A′B′C′D′上運動,則線段MN的中點P的軌跡(曲面)與二面角A-A′D′-B′所圍成的幾何體的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為4的正方體ABCD-A1B1C1D1中,點E、F分別在棱AA1和AB上,且C1E⊥EF,則|AF|的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆四川省高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

(文)如圖,在棱長為4的正方體ABCDABCD′中,E、F分別是AD、AD′的中點,長為2的線段MN的一個端點M在線段EF上運動,另一個端點N在底面ABCD′?上運動,則線段MN的中點P的軌跡(曲面)與二面角AAD′-B′所圍成的幾何體的體積為(  )

A.      B.        C.         D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江高三上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)如圖所示,在棱長為4的正方體ABCD—A1B1C1D1中,點E是棱CC1的中點。

 

(I)求三棱錐D1—ACE的體積;

(II)求異面直線D1E與AC所成角的余弦值;

(III)求二面角A—D1E—C的正弦值。

 

查看答案和解析>>

同步練習(xí)冊答案