已知函數(shù)在點處的切線方程為

⑴求函數(shù)的解析式;

⑵若對于區(qū)間上任意兩個自變量的值都有,求實數(shù)的最小值;

⑶若過點可作曲線的三條切線,求實數(shù)的取值范圍

(1)(2)的最小值為4(3)


解析:

.……………………………………………2分

根據(jù)題意,得解得……………………3分

所以.………………………………………………4分

⑵令,即.得

1

2

+

+

極大值

極小值

2

因為,

所以當(dāng)時,,.……………………6分

則對于區(qū)間上任意兩個自變量的值,都有

,所以

所以的最小值為4.……………………………………………………………………8分

⑶因為點不在曲線上,所以可設(shè)切點為

因為,所以切線的斜率為.………………………………9分

=,………………………………………………………………11分

因為過點可作曲線的三條切線,

所以方程有三個不同的實數(shù)解.

所以函數(shù)有三個不同的零點.

.令,則

0

2

+

+

極大值

極小值

 ,即,解得.…………………………………16分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆遼寧省五校協(xié)作體屆高三摸底考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)在點處的切線方程是x+ y-l=0,其中e為自然對數(shù)的底數(shù),函數(shù)g(x)=1nx- cx+ 1+ c(c>0),對一切x∈(0,+)均有恒成立.

(Ⅰ)求a,b,c的值;

(Ⅱ)求證:.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆云南省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)在點處的切線方程為

(1)求函數(shù)的解析式;

(2)若經(jīng)過點可以作出曲線的三條切線,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三第一次(3月)周測理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)在點處的切線方程為,且對任意的,恒成立.

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)求實數(shù)的最小值;

(Ⅲ)求證:).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省南昌市高二2月份月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題13分)已知函數(shù)在點處的切線與直線垂直.

(1)若對于區(qū)間上任意兩個自變量的值都有,求實數(shù)的最小值;

(2)若過點可作曲線的三條切線,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省蘇南四校高三12月月考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)在點處的切線方程為

(1)求函數(shù)的解析式;

(2)若對于區(qū)間[-2,2]上任意兩個自變量的值都有求實數(shù)c的最小值.

 

查看答案和解析>>

同步練習(xí)冊答案