已知函數(shù)y=f(x)的定義域是[0,4],求y=f(x+1)+f(x2-3)的定義域.
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系即可得到結(jié)論.
解答: 解:∵函數(shù)y=f(x)的定義域是[0,4],
∴由
0≤x+1≤4
0≤x2-3≤4
-1≤x≤3
3≤x2≤7
,
-1≤x≤3
3
≤x≤
7
或-
7
≤x≤-
3
,
解得
3
≤x≤3,
故函數(shù)的定義域為[
3
,3].
點評:本題主要考查函數(shù)的定義域的求解,根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos(x-
π
2
)+tan(π+x)是
 
函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知log3x=(log3y)2
(1)若x=3y,求x,y的值;
(2)當(dāng)x,y為何值時,
x
y
取得最小值?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
2
(sinxcosx+cos2x-
1
2
),x∈[0,π],當(dāng)方程f(x)=a有兩個不相等的實根x1,x2時:
(1)當(dāng)a的取值范圍;
(2)求x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象與x軸交于點(-1,0)和(2,0),則該二次函數(shù)的解析式可設(shè)為y=a
 
(a≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差不為零,a1=25,且a1、a11、a13成等比數(shù)列,則a1+a4+a7+…+a28=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2-ex,x∈[0,ln4]的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為保護環(huán)境,發(fā)展低碳經(jīng)濟,某單位在國家科研部門的支持下進(jìn)行技術(shù)攻關(guān),新上了把二氧化碳處理轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項目,經(jīng)測算,該項目月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為y=
1
3
x3-80x2+5040x,x∈[120,144)
1
2
x2-200x+80000,x∈[144,500]
,
(1)寫出每噸的平均處理成本S與月處理量x(噸)之間的函數(shù)關(guān)系式;
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?并求出該最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x≥
2
},則下列結(jié)論正確的是(  )
A、0∈AB、1∈A
C、2.14∈AD、3∈A

查看答案和解析>>

同步練習(xí)冊答案