16.已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},則A∩B={1}.

分析 求出兩個(gè)集合,然后求解交集即可.

解答 解:集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1}
則集合A∩B={1}.
故答案為:{1}

點(diǎn)評(píng) 本題考查集合的交集的求法,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.安排6名志愿者去做3項(xiàng)不同的工作,每項(xiàng)工作需要2人,由于工作需要,A,B二人必須做同一項(xiàng)工作,C,D二人不能做同-項(xiàng)工作,那么不同的安棑方案有多少種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)的定義域?yàn)镈,若滿足:①f(x)在D內(nèi)是單調(diào)函數(shù);②存在[a,b]上的值域?yàn)閇$\frac{a}{2}$,$\frac{2}$],那么就稱函數(shù)y=f(x)為“半值函數(shù)”,若函數(shù)f(x)=logc(cx+t)(c>0,c≠1)是“半值函數(shù)”,則t的取值范圍為( 。
A.(0,+∞)B.(-∞,$\frac{1}{4}$)C.($\frac{1}{4}$,+∞)D.(0,$\frac{1}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線y=kx+1與圓(x-1)2+(y-1)2=1相交于A,B,兩點(diǎn),若|AB|≥$\sqrt{2}$,則k的取值范圍( 。
A.[0,1]B.[-1,0]C.(-∞,-1]∪[1,+∞)D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.定義在R上的奇函數(shù)f(x)滿足:對(duì)任意的x1,x2∈(-∞,0),(x1≠x2),都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,則下列結(jié)論正確的是(  )
A.f(log3π)>f(log2$\sqrt{3}$)>f(log3$\sqrt{2}$)B.f(log2$\sqrt{3}$)>f(log3$\sqrt{2}$)>f(log3π)
C.f(log3$\sqrt{2}$)>f(log2$\sqrt{3}$)>f(log3π)D.f(log2$\sqrt{3}$)>f(log3π)>f(log3$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知A={1,3,4},B={1,5},則A∩B={1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知全集U=R,集合A=$\{x|\frac{x-1}{x-4}≤0\}$,集合B為函數(shù)g(x)=3x+a的值域.
(1)若a=2,求A∪B和A∩(CUB);
(2)若A∪B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若二次函數(shù)f(x)滿足f(2+x)=f(2-x),且f(1)<f(0)≤f(a),則實(shí)數(shù)a的取值范圍是a≤0,或a≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列條件能說明一個(gè)棱錐是正棱錐的是(  )
A.各側(cè)面都是等腰三角形B.側(cè)棱長(zhǎng)度相等且底面是菱形
C.所有棱長(zhǎng)都相等D.底面是三角形且三條側(cè)棱兩兩垂直

查看答案和解析>>

同步練習(xí)冊(cè)答案