【題目】已知命題p:x∈(1,+∞), >1;命題q:a∈(0,1),函數(shù)y=ax在(﹣∞,+∞)上為減函數(shù),則下列命題為真命題的是(
A.p∧q
B.¬p∧q
C.p∧¬q
D.¬p∧¬q

【答案】A
【解析】 解:命題p:x∈(1,+∞),由冪函數(shù)的性質(zhì)可得 >1,是真命題;
命題q:a∈(0,1),函數(shù)y=ax在(﹣∞,+∞)上為減函數(shù),利用指數(shù)函數(shù)的單調(diào)性可知:是真命題.
則下列命題為真命題的是p∧q,其余的為假命題.
故選;A.
【考點精析】解答此題的關鍵在于理解復合命題的真假的相關知識,掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復合命題的真假與F的真假相反;“p且q”形式復合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復合命題當p與q同為假時為假,其他情況時為真.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣ax,(a>0), ,命題p:an=f(n)是遞增數(shù)列,命題q:g(x)在(a,π)上有且僅有2條對稱軸.
(1)求g(x)的周期和單調(diào)遞增區(qū)間;
(2)若p∧q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是導數(shù)y=f′x)的圖象,則函數(shù)y=fx)的圖象是( 。

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,△ABC的三個頂點的坐標分別是A(2,4),B(4,2),C(6,6).

(1)求角A的余弦值;

(2)作AB的底邊上的高CD,D為垂足,求點D的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的中心在原點,焦點F1 , F2在軸上,焦距為2,離心率為
(1)求橢圓C的方程;
(2)若P是橢圓C上第一象限內(nèi)的點,△PF1F2的內(nèi)切圓的圓心為I,半徑為 .求:
(i)點P的坐標;
(ii)直線PI的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知yf(x)是定義域為R的奇函數(shù),當x∈[0,+∞)時,f(x)=x2-2x.

(1)寫出函數(shù)yf(x)的解析式

(2)若方程f(x)=a恰有3個不同的解,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的半焦距為,左焦點為,右頂點為,拋物線與橢圓交于兩點,若四邊形是菱形,則橢圓的離心率是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著我國經(jīng)濟的發(fā)展,居民的儲蓄存款逐年增長.設某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:

年份

2010

2011

2012

2013

2014

時間代號

1

2

3

4

5

儲蓄存款 (千億元)

6

7

8

9

10

(1)求關于的回歸方程;

(2)用所求回歸方程預測該地區(qū)2015年的人民幣儲蓄存款.

附:回歸方程中, ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=是奇函數(shù),gx)=log2(2x+1)-bx是偶函數(shù).

(1)求a-b;

(2)若對任意的t∈[-1,2],不等式f(t2-2t-1)+f(2t2-k)<0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案