設(shè)函數(shù)
(1)設(shè)的內(nèi)角,且為鈍角,求的最小值;
(2)設(shè)是銳角的內(nèi)角,且的三個(gè)內(nèi)角的大小和AC邊的長。

(1)(2),

解析試題分析:(1)
  ………3分
∵角A為鈍角,    ……………………………4分
取值最小值,其最小值為……………………6分
(2)由………………8分
,
…………10分
在△中,由正弦定理得:   ……12分
考點(diǎn):三角函數(shù)公式及解三角形
點(diǎn)評(píng):解三角形一般都會(huì)用到正余弦定理

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
在△ABC中,已知b,c=1,∠B=60°,求a和∠A,∠C

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
在銳角中,分別是內(nèi)角所對(duì)的邊,且
(1)求角的大小;
(2)若,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分) 在中,角的對(duì)邊分別為,且滿足
(1)求角的大;
(2)若為鈍角三角形,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
(理)某種型號(hào)汽車四個(gè)輪胎半徑相同,均為,同側(cè)前后兩輪胎之間的距離(指輪胎中心之間距離)為 (假定四個(gè)輪胎中心構(gòu)成一個(gè)矩形). 當(dāng)該型號(hào)汽車開上一段上坡路(如圖(1)所示,其中()),且前輪已在段上時(shí),后輪中心在位置;若前輪中心到達(dá)處時(shí),后輪中心在處(假定該汽車能順利駛上該上坡路). 設(shè)前輪中心在處時(shí)與地面的接觸點(diǎn)分別為,且,. (其它因素忽略不計(jì))

(1)如圖(2)所示,的延長線交于點(diǎn),
求證:(cm);

(2)當(dāng)=時(shí),后輪中心從處移動(dòng)到處實(shí)際移動(dòng)了多少厘米? (精確到1cm)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,2012年春節(jié),攝影愛好者S在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測得立柱頂端O的仰角和立柱底部B的俯角均為,已知S的身高約為米(將眼睛距地面的距離按米處理)

(1) 求攝影者到立柱的水平距離和立柱的高度;
(2) 立柱的頂端有一長2米的彩桿MN繞中點(diǎn)O在S與立柱所在的平面內(nèi)旋轉(zhuǎn).?dāng)z影者有一視角范圍為的鏡頭,在彩桿轉(zhuǎn)動(dòng)的任意時(shí)刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)在中,分別為內(nèi)角的對(duì)邊,且。
(Ⅰ)求角的大小;
(Ⅱ)設(shè)函數(shù),求的最大值,并判斷此時(shí)的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中,,,
(1)求的面積關(guān)于的表達(dá)式
(2)求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知、、分別是的三個(gè)內(nèi)角、、所對(duì)的邊,(1)若面積、的值;
(2)若,且,試判斷的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案