已知二次函數(shù)滿足以下兩個條件:

①不等式的解集是(-2,0)   ②函數(shù)上的最小值是3 

(Ⅰ)求的解析式;

 (Ⅱ)若點在函數(shù)的圖象上,且

(。┣笞C:數(shù)列為等比數(shù)列

(ⅱ)令,是否存在整數(shù)使得數(shù)列取到最小值?若有,請求出的值;沒有,請說明理由。

 

 

 

 

【答案】

 解:(Ⅰ)∵ fx)< 0 的解集為(-2,0),且fx)是二次函數(shù)

       ∴ 可設  fx)= a xx + 2) (a > 0),故 fx)的對稱軸為直線 ,

       ∴  fx)在 [1,2]上的最小值為f(1)=3a =3 ,

       ∴ a = 1 ,所以fx)= x 2 + 2 x  .

(Ⅱ)(。 點(a n , a n + 1 )在函數(shù)fx)= x 2 + 2 x 的圖象上

           ∴ a n + 1  = a n 2 + 2 a n  ,  則 1 + a n + 1  = 1 + a n 2 + 2 a n = (1 + a n2 

           ∴ , 又首項

           ∴ 數(shù)列 為等比數(shù)列,且公比為2 。

(ⅱ)由上題可知,,

時,有, 時,有

故只須比較,而,所以當時,數(shù)列取到最小值。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2007•崇明縣一模)已知二次函數(shù)f(x)=x2+bx+c(x∈R),同時滿足以下條件:
①存在實數(shù)m,使得f(m)=0,且對任意實數(shù)x,恒有f(x)≥0成立;
②存在實數(shù)k (k≠0),使得f(1-k)=f(1+k)成立.
(1)求函數(shù)y=f(x)的解析式;
(2)設數(shù)列{an}的前n項和為Sn,Sn=f(n),數(shù)列{bn}滿足關系式bn=an+2+
2
,問數(shù)列{bn}中是否存在不同的3項,使之成為等比數(shù)列?若存在,試寫出任意符合條件的3項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)
(1)若f(-1)=0,試判斷函數(shù)f(x)零點的個數(shù);
(2)是否存在a,b,c∈R,使f(x)同時滿足以下條件:①f(-1+x)=f(-1-x)且f(x)≥0;
②對0≤f(x)-x≤
12
(x-1)2.若存在,求出a,b,c的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省2009屆高三教學質(zhì)量檢測模擬試題(一)、數(shù)學 題型:044

已知二次函數(shù)滿足以下條件:

①圖像關于直線x=對稱;②f(1)=0;③其圖像可由y=x2-1平移得到.

(Ⅰ)求y=f(x)表達式;

(Ⅱ)若數(shù)列{an},{bn}對任意的實數(shù)x都滿足f(x)·g(x)+anx+bn=xn+1(n∈N*),其中g(shù)(x)是定義在實數(shù)集R上的一個函數(shù),求數(shù)列{an},{bn}的通項公式.

(Ⅲ)設圓Cn:(x-an)2+(y-bn)2,(n∈N*),若圓Cn與圓Cn+1外切,且{rn}是各項都為正數(shù)的等比數(shù)列,求數(shù)列{rn}的公比q的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆福建省高二上學期期中考試文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)

已知二次函數(shù)滿足以下兩個條件:

①不等式的解集是(-2,0)   ②函數(shù)上的最小值是3 

(Ⅰ)求的解析式;

 (Ⅱ)若點在函數(shù)的圖象上,且

(。┣笞C:數(shù)列為等比數(shù)列

(ⅱ)令,是否存在正實數(shù),使不等式對于一切的恒成立?若存在,指出的取值范圍;若不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案