【題目】如圖1所示,在邊長為4的菱形ABCD中,∠DAB=60°,點E,F(xiàn)分別是邊CD,CB的中點,EF∩AC=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖2所示五棱錐P﹣ABFED,且AP= ,
(1)求證:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的正切值.
【答案】
(1)證明:PO⊥EF,AO⊥EF,所以EF⊥平面POA,因為BD∥EF
∴BD⊥平面POA
則PO⊥BD,又AO⊥BD,AO∩PO=O,AO平面APO,PO平面APO,
∴BD⊥平面APO
(2)解:因為AP= ,可證PO⊥AO,所以EF,PO,AO互相垂直
以O(shè)為原點,OA為x軸,OF為y軸,OP為z軸,建立坐標系,
則O(0,0,0),A(3 ,0,0),P(0,0, ),B( ,2,0),
設(shè) =(x,y,z)為平面OAP的一個法向量,
則 =(0,1,0), =(x,y,z)為平面ABP的一個法向量,
=(﹣2 ,2,0), =(﹣3 ,0, ),
則 ,令x=1,則y= ,z=3,
則 =(1, ,3)….cosθ= = ,∴tanθ=
∴二面角B﹣AP﹣O的正切值為
【解析】(1)證明PO⊥BD,AO⊥BD,可得BD⊥平面APO,(2)以O(shè)為原點,OA為x軸,OF為y軸,OP為z軸,建立坐標系,則O(0,0,0),A(3 ,0,0),P(0,0, ),B( ,2,0),求出平面OAP的一個法向量,平面ABP的一個法向量即可
科目:高中數(shù)學 來源: 題型:
【題目】定義在區(qū)間D上的函數(shù)f(x),如果滿足:對任意x∈D,都存在常數(shù)M≥0,有|f(x)|≤M,則稱f(x)是區(qū)間D上有界函數(shù),其中M稱為f(x)上的一個上界,已知函數(shù)g(x)=log 為奇函數(shù).
(1)求函數(shù)g(x)在區(qū)間[ , ]上的所有上界構(gòu)成的集合;
(2)若g(1﹣m)+g(1﹣m2)<0,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱錐A﹣BCD中,△ABC和△BCD所在平面互相垂直,且AB=CD=4,AC=4 ,CD=4 ,∠ACB=45°,E,F(xiàn)分別為MN的中點.
(1)求證:EF∥平面ABD;
(2)求二面角E﹣BF﹣C的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐P﹣ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點E在棱PD上,且DE=2PE.
(Ⅰ)求異面直線PA與CD所成的角的大。
(Ⅱ)求證:BE⊥平面PCD;
(Ⅲ)求二面角A﹣PD﹣B的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】持續(xù)高溫使漳州市多地出現(xiàn)氣象干旱,城市用水緊張,為了宣傳節(jié)約用水,某人準備在一片扇形區(qū)域(如圖3)上按照圖4的方式放置一塊矩形ABCD區(qū)域宣傳節(jié)約用水,其中頂點B,C在半徑ON上,頂點A在半徑OM上,頂點D在 上,∠MON= ,ON=OM=10,m,設(shè)∠DON=θ,矩形ABCD的面積為S.
(Ⅰ)用含θ的式子表示DC,OB的長‘
(Ⅱ)若此人布置1m2的宣傳區(qū)域需要花費40元,試將S表示為θ的函數(shù),并求布置此矩形宣傳欄最多要花費多少元錢?(精確到0.01)
(參考數(shù)據(jù): ≈1.732, ≈1.414)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】元代數(shù)學家朱世杰所著《四元玉鑒》一書,是中國古代數(shù)學的重要著作之一,共分卷首、上卷、中卷、下卷四卷,下卷中《果垛疊藏》第一問是:“今有三角垛果子一所,值錢一貫三百二十文,只云從上一個值錢二文,次下層層每個累貫一文,問底子每面幾何?”據(jù)此,繪制如圖所示程序框圖,求得底面每邊的果子數(shù)n為( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)命題p:實數(shù)x滿足x2﹣4ax+3a2<0,其中a>0,命題q:實數(shù)x滿足 . (Ⅰ)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(Ⅱ)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知直線2x﹣y﹣4=0與直線x﹣2y+1=0交于點p.
(1)求過點p且垂直于直線3x+4y﹣15=0的直線l1的方程;(結(jié)果寫成直線方程的一般式)
(2)求過點P并且在兩坐標軸上截距相等的直線l2方程(結(jié)果寫成直線方程的一般式)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的焦點分別為F1(﹣2 ,0)和F2(2 ,0),長軸長為6,設(shè)直線y=x+2交橢圓C于A、B兩點.求:線段AB的中點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com