解:(1)∵橢圓C:
(a>0,b>0)過(guò)點(diǎn)P(
),∴
∵向量
,∴4c
2=2+(
-c)
2+2+(
-c)
2,∴c=2
又a
2=b
2+c
2,∴a
2=12,b
2=4
∴橢圓方程為
(2)①當(dāng)斜率k不存在時(shí),由于點(diǎn)M不是線段AB的中點(diǎn),所以不符合要求;
②當(dāng)斜率k存在時(shí),設(shè)直線l方程為y+
=k(x-
),代入橢圓方程整理得
(3+k
2)x
2-(k
2+3k)x+
k
2-
=0
∵線段AB中點(diǎn)為m(
),∴
=
∴k=1
∴直線l:x-y-2=0
(3)化簡(jiǎn)曲線方程得:(x-m)
2+(y+2)
2=8,是以(m,-2)為圓心,2
為半徑的圓.
表示圓心在直線y=-2上,半徑為2
的動(dòng)圓.
由于要求實(shí)數(shù)m的最小值,由圖可知,只須考慮m<0的情形.
當(dāng)圓與直線相切時(shí),
,此時(shí)為m=-4,圓心(-4,-2).
當(dāng)m=-4時(shí),過(guò)點(diǎn)G(-4,-2)與直線l垂直的直線l'的方程為x+y+6=0,
解方程組
,得T(-2,-4).
因?yàn)閰^(qū)域D內(nèi)的點(diǎn)的橫坐標(biāo)的最小值與最大值分別為-1,2,
所以切點(diǎn)T∉D,由圖可知當(dāng)⊙G過(guò)點(diǎn)B時(shí),m取得最小值,即(-1-m)
2+(-3+2)
2=8,解得m
min=-
-1.
分析:(1)把點(diǎn)B代入橢圓的方程,利用向量垂直,及幾何量之間的關(guān)系,聯(lián)立方程求得a和b,則橢圓的方程可得;
(2)分類討論,利用線段AB中點(diǎn)坐標(biāo),結(jié)合韋達(dá)定理,可求直線的方程;
(3)把圓的方程整理成標(biāo)準(zhǔn)方程求得圓心和半徑,進(jìn)而利用圖象可知只須考慮m<0的情形.設(shè)出圓與直線的切點(diǎn),利用點(diǎn)到直線的距離求得m,進(jìn)而可求得過(guò)點(diǎn)G與直線l垂直的直線的方程,把兩直線方程聯(lián)立求得T,因?yàn)閰^(qū)域D內(nèi)的點(diǎn)的橫坐標(biāo)的最小值與最大值分別為-1,2,所以切點(diǎn)T∉D,由圖可知當(dāng)⊙G過(guò)點(diǎn)B時(shí),m取得最小值,利用兩點(diǎn)間的距離公式求得m的最小值.
點(diǎn)評(píng):本題考查橢圓與直線的方程,考查直線與圓錐曲線的綜合問(wèn)題,同時(shí)考查了知識(shí)的綜合運(yùn)用和數(shù)形結(jié)合的方法的應(yīng)用.