A. | 12π | B. | 32π | C. | 36π | D. | 48π |
分析 由題意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,將此三棱錐補成正方體,則它們有相同的外接球,正方體的對角線就是球的直徑,求出直徑即可求出球的體積.
解答 解:∵M(jìn),N分別為棱SC,BC的中點,∴MN∥SB
∵三棱錐S-ABC為正棱錐,
∴SB⊥AC(對棱互相垂直)
∴MN⊥AC
又∵M(jìn)N⊥AM,而AM∩AC=A,
∴MN⊥平面SAC,
∴SB⊥平面SAC
∴∠ASB=∠BSC=∠ASC=90°
以SA,SB,SC為從同一定點S出發(fā)的正方體三條棱,
將此三棱錐補成以正方體,則它們有相同的外接球,
正方體的對角線就是球的直徑.
∴2R=$\sqrt{3}$SA=6,
∴R=3,
∴V=$\frac{4}{3}$πR3=36π.
故選:C.
點評 本題考查了三棱錐的外接球的體積,考查空間想象能力.三棱錐擴展為正方體,它的對角線長就是外接球的直徑,是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{C}_{3}^{2}}{{C}_{50}^{2}}$ | B. | $\frac{{C}_{3}^{1}{C}_{47}^{1}}{{C}_{50}^{2}}$ | C. | $\frac{{C}_{47}^{2}}{{C}_{50}^{2}}$ | D. | 1-$\frac{{C}_{47}^{2}}{{C}_{50}^{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A=B | B. | B=A∪C | C. | B=A∩C | D. | B⊆C |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 14π | B. | 12π | C. | 10π | D. | 8π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(0,\frac{4}{3})$ | B. | $(0,\frac{4}{3}]$ | C. | $\{\frac{1}{3},1,\frac{4}{3}\}$ | D. | $\{\frac{1}{3},1\}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,$\frac{1}{2}$] | C. | (0,$\frac{1}{2}$) | D. | ($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 38 | B. | 34 | C. | 28 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{30}$ | B. | $2\sqrt{30}$ | C. | $\sqrt{51}$ | D. | $2\sqrt{51}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com