【題目】直線與拋物線相交于,兩點(diǎn),且,若,到軸距離的乘積為.
(1)求的方程;
(2)設(shè)點(diǎn)為拋物線的焦點(diǎn),當(dāng)面積最小時,求直線的方程.
【答案】(1);(2)
【解析】
(1)設(shè)出兩點(diǎn)的坐標(biāo),由距離之積為16,可得.利用向量的數(shù)量積坐標(biāo)運(yùn)算,將轉(zhuǎn)化為.再利用兩點(diǎn)均在拋物線上,即可求得p的值,從而求出拋物線的方程;
(2)設(shè)出直線l的方程,代入拋物線方程,由韋達(dá)定理發(fā)現(xiàn)直線l恒過定點(diǎn),將面積用參數(shù)t表示,求出其最值,并得出此時的直線方程.
解:(1)由題設(shè),
因為,到軸的距離的積為,所以,
又因為,,
,
所以拋物線的方程為.
(2)因為直線與拋物線兩個公共點(diǎn),所以的斜率不為,
所以設(shè)
聯(lián)立,得,
即,,
即直線恒過定點(diǎn),
所以,
當(dāng)時,面積取得最小值,此時.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)F到左頂點(diǎn)的距離為3.
(1)求橢圓C的方程;
(2)設(shè)O是坐標(biāo)原點(diǎn),過點(diǎn)F的直線與橢圓C交于A,B兩點(diǎn)(A,B不在x軸上),若,延長AO交橢圓與點(diǎn)G,求四邊形AGBE的面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,點(diǎn)是線段上的動點(diǎn),則下列說法正確的是( )
A.無論點(diǎn)在上怎么移動,都有
B.當(dāng)點(diǎn)移動至中點(diǎn)時,才有與相交于一點(diǎn),記為點(diǎn),且
C.無論點(diǎn)在上怎么移動,異面直線與所成角都不可能是
D.當(dāng)點(diǎn)移動至中點(diǎn)時,直線與平面所成角最大且為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、是兩個不同的平面,點(diǎn)、,、,下列命題中正確的是( )
A.若,,則,
B.若,,則,
C.若,,,則、,
D.若,,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月1日,是中華人民共和國成立70周年紀(jì)念日.70年砥礪奮進(jìn),70年波瀾壯闊,感染、激勵著一代又一代華夏兒女,為祖國的繁榮昌盛努力拼搏,奮發(fā)圖強(qiáng).為進(jìn)一步對學(xué)生進(jìn)行愛國教育,某校社會實(shí)踐活動小組,在老師的指導(dǎo)下,從學(xué)校隨機(jī)抽取四個班級160名同學(xué)對這次國慶閱兵受到激勵情況進(jìn)行調(diào)查研究,記錄的情況如下圖:
(1)如果從這160人中隨機(jī)選取1人,此人非常受激勵的概率和此人是很受激勵的女同學(xué)的概率都是,求的值;
(2)根據(jù)“非常受激勵”與“很受激勵”兩種情況進(jìn)行研究,判斷是否有的把握認(rèn)為受激勵程度與性別有關(guān).
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個零點(diǎn).
(1)求的取值范圍;
(2)是否存在實(shí)數(shù), 對于符合題意的任意,當(dāng) 時均有?
若存在,求出所有的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在處有極值,且,則稱為函數(shù)的“F點(diǎn)”.
(1)設(shè)函數(shù)().
①當(dāng)時,求函數(shù)的極值;
②若函數(shù)存在“F點(diǎn)”,求k的值;
(2)已知函數(shù)(a,b,,)存在兩個不相等的“F點(diǎn)”,,且,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱錐P-ABC中,平面PAB⊥平面ABC,△ABC是邊長為的等邊三角形,,點(diǎn)O,M分別是AB,BC的中點(diǎn).
(1)證明:AC//平面POM;
(2)求點(diǎn)B到平面POM的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為的菱形,,,為的中點(diǎn),為的中點(diǎn),點(diǎn)在線段上,且.
(1)求證:平面;
(2)若平面底面ABCD,且,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com