如圖所示,矩形中,平面,上的點(diǎn),
平面
(1)求證:平面
(2)求證:平面;
(3)求三棱錐的體積。

(1)證明見解析;(2)證明見解析;(3).

解析試題分析:(1)利用線面垂直的判斷定理證明線面垂直,條件齊全.(2)利用棱錐的體積公式求體積.(3)證明線面垂直的方法:一是線面垂直的判定定理;二是利用面面垂直的性質(zhì)定理;三是平行線法(若兩條平行線中的一條垂直于這個(gè)平面,則另一條也垂直于這個(gè)平面.解題時(shí),注意線線、線面與面面關(guān)系的相互轉(zhuǎn)化.(4)在求三棱柱體積時(shí),選擇適當(dāng)?shù)牡鬃鳛榈酌妫@樣體積容易計(jì)算.

試題解析:解:(1)證明:∵平面,
平面,則                                 2分
平面,則
平面                   4分
(2)由題意可得的中點(diǎn),連接
平面,則,
中點(diǎn)                 6分
中,平面     8分
(3)平面,
平面,平面
中點(diǎn),中點(diǎn),
,                                      9分
平面,
中,,                              10分
    &nb

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在正方體ABCD-A1B1C1D1中,M、N、P分別是AD1、BD和B1C的中點(diǎn),

求證:(1)MN∥平面CC1D1D.    (2)平面MNP∥平面CC1D1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱柱的三視圖,主視圖和側(cè)視圖是全等的矩形,俯視圖是等腰直角三角形,點(diǎn)M是A1B1的中點(diǎn)。


(I)求證:B1C//平面AC1M;
(II)求證:平面AC1M⊥平面AA1B1B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知的直徑AB=3,點(diǎn)C為上異于A,B的一點(diǎn),平面ABC,且VC=2,點(diǎn)M為線段VB的中點(diǎn).
(1)求證:平面VAC;
(2)若AC=1,求直線AM與平面VAC所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖1,直角梯形中,,,點(diǎn)為線段上異于的點(diǎn),且,沿將面折起,使平面平面,如圖2.
(1)求證:平面;
(2)當(dāng)三棱錐體積最大時(shí),求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,點(diǎn)分別是棱的中點(diǎn). 
(1)求證://平面;
(2)若平面平面,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,平面平面,,,.
(1)證明:平面
(2)求直線與平面所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知PA垂直于正方形ABCD所在的平面,若PA和正方形的邊長(zhǎng)都等于3則PC和平面ABCD所成的角是            。(用反正切函數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知直線 平行,且的距離為則直線的方程是      

查看答案和解析>>

同步練習(xí)冊(cè)答案