如圖, 在等腰梯形ABCD中, AB//CD, 且AB="2CD," 設(shè)∠DAB=, ∈(0, ), 以A, B為焦點且過點D的雙曲線的離心率為e1, 以C, D為焦點且過點A的橢圓的離心率為e2, 設(shè)
的大致圖像是 (    )
  
D

試題分析:根據(jù)題意, 由于等腰梯形ABCD中, AB//CD, 且AB="2CD," 設(shè)∠DAB=, ∈(0, ),那么結(jié)合雙曲線的定義,以A, B為焦點且過點D的雙曲線的離心率為e1, 以C, D為焦點且過點A的橢圓的離心率為e2,BD-DA=2a,AB=2c,AD+DC=2a’,且,因為a在增大,c不變可知離心率e1增大,而對于離心率e2,不變,那么可知正確的圖象為D。
點評:主要是考查了雙曲線以及橢圓性質(zhì)的運用,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點到兩點,的距離之和等于4,設(shè)點的軌跡為,直線與軌跡交于兩點.
(Ⅰ)寫出軌跡的方程;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線(p>0)的焦點F恰好是雙曲線的右焦點,且兩條曲線的交點的連線過F,則該雙曲線的離心率為(     )  
A.B.2C.+1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過雙曲線,的左焦點作圓: 的兩條切線,切點為,雙曲線左頂點為,若,則雙曲線的漸近線方程為       (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:與橢圓共焦點,

(Ⅰ)求的值和拋物線C的準線方程;
(Ⅱ)若P為拋物線C上位于軸下方的一點,直線是拋物線C在點P處的切線,問是否存在平行于的直線與拋物線C交于不同的兩點A,B,且使?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點是橢圓)的左焦點,點,分別是橢圓的左頂點和上頂點,橢圓的離心率為,點軸上,且,過點作斜率為的直線與由三點,確定的圓相交于,兩點,滿足

(1)若的面積為,求橢圓的方程;
(2)直線的斜率是否為定值?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線的準線過雙曲線的右焦點,則雙曲線的離心率為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

記橢圓圍成的區(qū)域(含邊界)為Ωn(n=1,2,…),當點(x,y)分別在Ω1,Ω2,…上時,x+y的最大值分別是M1,M2,…,則Mn=( 。
A.0B.C.2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的焦距為4,且過點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)為橢圓上一點,過點軸的垂線,垂足為。取點,連接,過點的垂線交軸于點。點是點關(guān)于軸的對稱點,作直線,問這樣作出的直線是否與橢圓C一定有唯一的公共點?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案