【題目】設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式 <0的解集為( )
A.(﹣1,0)∪(1,+∞)
B.(﹣∞,﹣1)∪(0,1)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
【答案】D
【解析】解:由奇函數(shù)f(x)可知 ,即x與f(x)異號, 而f(1)=0,則f(﹣1)=﹣f(1)=0,
又f(x)在(0,+∞)上為增函數(shù),則奇函數(shù)f(x)在(﹣∞,0)上也為增函數(shù),
當(dāng)0<x<1時(shí),f(x)<f(1)=0,得 <0,滿足;
當(dāng)x>1時(shí),f(x)>f(1)=0,得 >0,不滿足,舍去;
當(dāng)﹣1<x<0時(shí),f(x)>f(﹣1)=0,得 <0,滿足;
當(dāng)x<﹣1時(shí),f(x)<f(﹣1)=0,得 >0,不滿足,舍去;
所以x的取值范圍是﹣1<x<0或0<x<1.
故選D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的奇函數(shù)的相關(guān)知識可以得到問題的答案,需要掌握一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)椋ī?,1),則函數(shù)g(x)=f( )+f(x﹣1)的定義域?yàn)椋?/span> )
A.(﹣2,0)
B.(﹣2,2)
C.(0,2)
D.(﹣ ,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)等比數(shù)列{an}滿足:a7=a6+2a5 , 若存在兩項(xiàng)am , an , 使得aman=16a12 , 則 + 的最小值為( )
A.
B.
C.
D.不存在
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣3x+2=0},B={x|x2﹣mx+2=0},且A∩B=B,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= + 的定義域?yàn)椋?/span> )
A.{x|x≥﹣3且x≠﹣2}
B.{x|x≥﹣3且x≠2}
C.{x|x≥﹣3}
D.{x|x≥﹣2且x≠3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 是定義在(﹣1,1)上的奇函數(shù),且f(1)=1.
(1)求函數(shù)f(x)的解析式;
(2)判斷并證明f(x)在(﹣1,1)上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=1+a( )x+( )x .
(1)當(dāng)a=﹣2,x∈[1,2]時(shí),求函數(shù)f(x)的最大值與最小值;
(2)若函數(shù)f(x)在[1,+∞)上都有﹣2≤f(x)≤3,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A={x|﹣1<x<2},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定義A﹣B={x|x∈A且xB},求A﹣B和B﹣A.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com