A. | -1 | B. | 1 | C. | 2 | D. | 3 |
分析 作出不等式組對應的平面區(qū)域,利用目標函數的幾何意義,利用數形結合確定z的最大值
解答 解:作出不等式組對應的平面區(qū)域如圖:(陰影部分).
則A(1,0),B(3,4),C(1,2)
若z=ax+y過A時取得最大值為1,則a=1,
此時,目標函數為z=x+y,
即y=-x+z,
平移直線y=-x+z,當直線經過B(3,4)時,
此時z最大為1,故不滿足條件,
若z=ax+y過B時取得最大值為1,則3a+4=1,解得a=-1,
此時,目標函數為z=-x+y,
即y=x+z,
平移直線y=x+z,當直線經過C(1,2)時,截距最大,此時z最大為3,不滿足條件,
若z=ax+y過C時取得最大值為1,則a+2=1,解得a=-1,
此時,目標函數為z=-x+y,
即y=x+z,
平移直線y=x+z,當直線經過C(1,2)時,截距最大,此時z最大為1,不滿足條件,
故a=-1;
故選:A
點評 本題主要考查線性規(guī)劃的應用,結合目標函數的幾何意義,利用數形結合的數學思想是解決此類問題的基本方法,確定目標函數的斜率關系是解決本題的關鍵.
科目:高中數學 來源: 題型:選擇題
A. | {3} | B. | {2,3} | C. | {-1,2,3} | D. | {-1,1,2,3} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | b∥α | B. | c⊥b | C. | b∥d | D. | b與d是異面直線 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com