已知曲線C的方程為:x2+y2-2|x|-2|y|=0,P1、P2是曲線C上的兩個點,則|P1P2|的最大值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
D
分析:利用絕對值的幾何意義可知曲線C的圖形,進而可得|P1P2|的最大值為一、三(或二、四)象限的圓的圓心距加上2個半徑的長.
解答:利用絕對值的幾何意義可知曲線C表示x2+y2-2x-2y=0,x2+y2+2x|-2y=0,x2+y2+2x+2y=0,x2+y2-2x+2y=0,分別在各個象限的部分(包括與坐標(biāo)軸的交點)

∵P1、P2是曲線C上的兩個點,
∴|P1P2|的最大值為一、三(或二、四)象限的圓的圓心距加上2個半徑的長
∴|P1P2|的最大值為++=
故選D.
點評:本題考查圓的方程,考查數(shù)形結(jié)合的數(shù)學(xué)思想,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的方程為x2+x+y-1=0,則下列各點中在曲線C上的點是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的方程為y2=4x(x>0),曲線E是以F1(-1,0)、F2(1,0)為焦點的橢圓,點P為曲線C與曲線E在第一象限的交點,且|PF2|=
53

(1)求曲線E的標(biāo)準方程;
(2)直線l與橢圓E相交于A,B兩點,若AB的中點M在曲線C上,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•松江區(qū)三模)已知曲線C的方程為:x2+y2-2|x|-2|y|=0,P1、P2是曲線C上的兩個點,則|P1P2|的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的方程為
x2
|k|
+
y2
1-k
=1
,則當(dāng)C為雙曲線時,k的取值范圍是
(1,+∞)
(1,+∞)
;當(dāng)C為焦點在y軸上的橢圓時,k的取值范圍是
(-∞,0)∪(0,
1
2
)
(-∞,0)∪(0,
1
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•嘉定區(qū)一模)已知曲線C的方程為x2+ay2=1(a∈R).
(1)討論曲線C所表示的軌跡形狀;
(2)若a≠-1時,直線y=x-1與曲線C相交于兩點M,N,且|MN|=
2
,求曲線C的方程.

查看答案和解析>>

同步練習(xí)冊答案