分析 設(shè)此等差數(shù)列為{an},則a1+a3+…+a2n+1=175,a2+a4+…+a2n=150,可得nd-a2n+1=-25,即an+1=25,$\frac{(2n+1)({a}_{1}+{a}_{2n+1})}{2}$=(2n+1)an+1=325,聯(lián)立解出即可得出.
解答 解:設(shè)此等差數(shù)列為{an},則a1+a3+…+a2n+1=175,a2+a4+…+a2n=150,
則nd-a2n+1=-25,即an+1=25,$\frac{(2n+1)({a}_{1}+{a}_{2n+1})}{2}$=(2n+1)an+1=325,
∴(2n+1)×25=325,解得n=6.
∴此數(shù)列共有13項.
故答案為:13.
點評 本題考查了等差數(shù)列的通項公式與求和公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(0.32)<f(20.3)<f(log25) | B. | $f({log_2}5)<f({2^{0.3}})<f({0.3^2})$ | ||
C. | $f({log_2}5)<f({0.3^2})<f({2^{0.3}})$ | D. | $f({0.3^2})<f({log_2}5)<f({2^{0.3}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-∞,-\frac{7}{2})$ | B. | (-∞,1) | C. | $(-\frac{7}{2},+∞)$ | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com