設(shè)x∈Rf(x)若不等式f(x)f(2x)≤k對于任意的x∈R恒成立,則實數(shù)k的取值范圍是________

 

k≥2

【解析】不等式化為k≥,因為(01],所以k≥2.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第四章第3課時練習(xí)卷(解析版) 題型:解答題

設(shè)向量a(sinxsinx),b(cosx,sinx)x.

(1)|a||b|.x的值;

(2)設(shè)函數(shù)f(x)a·bf(x)的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第四章第1課時練習(xí)卷(解析版) 題型:填空題

設(shè)D、E分別是△ABC的邊AB、BC上的點ADAB,BEDC,λ1λ21、λ2為實數(shù)),λ1λ2________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第六章第4課時練習(xí)卷(解析版) 題型:填空題

已知實數(shù)x、y滿足不等式的取值范圍________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第六章第4課時練習(xí)卷(解析版) 題型:填空題

設(shè)a,b0,ab1,不等式≤λ恒成立,λ的取值范圍是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第六章第3課時練習(xí)卷(解析版) 題型:填空題

已知P△ABC的邊BC上的任一點,且滿足xyx、y∈R,的最小值是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第六章第3課時練習(xí)卷(解析版) 題型:解答題

1a>b>c,求證:

2a>b>c,求使得恒成立的k的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第六章第2課時練習(xí)卷(解析版) 題型:解答題

某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗A原料1kg、B原料2kg;生產(chǎn)乙產(chǎn)品1桶需耗A原料2kg,B原料1kg.每桶甲產(chǎn)品的利潤是300,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計劃中,要求每天消耗A、B原料都不超過12kg.通過合理安排生產(chǎn)計劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤是多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第6課時練習(xí)卷(解析版) 題型:解答題

如右圖,在棱長為a的正方體ABCDA1B1C1D1G△BC1D重心,

(1)試證:A1、G、C三點共線;

(2)試證:A1C平面BC1D;

 

查看答案和解析>>

同步練習(xí)冊答案