已知橢圓數(shù)學(xué)公式,離心率為數(shù)學(xué)公式,F(xiàn)1,F(xiàn)2分別為其左右焦點,橢圓上點P到F1與F2距離之和為4,
(1)求橢圓C1方程.
(2)若一動圓過F2且與直線x=-1相切,求動圓圓心軌跡C方程.
(3)在(2)軌跡C上有兩點M,N,橢圓C1上有兩點P,Q,滿足數(shù)學(xué)公式數(shù)學(xué)公式共線,數(shù)學(xué)公式數(shù)學(xué)公式共線,且數(shù)學(xué)公式數(shù)學(xué)公式=0,求四邊形PMQN面積最小值.

解:(1)∵橢圓,離心率為,
F1,F(xiàn)2分別為其左右焦點,橢圓上點P到F1與F2距離之和為4,
,解得a=2,c=1,b2=a2-c2=3,
∴橢圓C1方程為
(2)設(shè)動圓圓心C(x,y),
∵動圓過的右焦點F2(1,0),且與直線x=-1相切,
,
整理,得動圓圓心軌跡C方程為y2=4x.
(3)當(dāng)直線斜率不存在時,|MN|=4,
此時PQ的長即為橢圓長軸長,|PQ|=4,
從而SPMQN=|MN|•|PQ|=×4×4=8,
設(shè)直線MN的斜率為k,直線MN的方程為:y=k(x-1),
直線PQ的方程為y=(x-1),
設(shè)M(x1,y1),N(x2,y2),P(x3,y3),Q(x4,y4),
,消去y可得k2x2-(2k2+4)x+k2=0,
由拋物線定義可知:
|MN|=|MF2|+|NF2|=x1+1+x2+1
=+2=4+
,消去y得(3k2+4)x2-8x+4-12k2=0,
從而|PQ|=|x3-x4|=,
∴SPMQN=|MN|•|PQ|=|MN|•|PQ|
=(4+)•
=24•
令1+k2=t,∵k>0,則t>1,
則SPMQN=
=
=
因為3--=4-(1+2∈(0,3),
所以SPMQN=>8,
所以四邊形PMQN面積的最小值為8.
分析:(1)由題設(shè)知,由此能求出橢圓C1方程.
(2)設(shè)動圓圓心C(x,y),由動圓過的右焦點F2(1,0),且與直線x=-1相切,知,由此能求出動圓圓心軌跡C方程.
(3)當(dāng)直線斜率不存在時,|MN|=4,SPMQN=8;當(dāng)直線斜率不存在時,設(shè)直線MN的方程為:y=k(x-1),直線PQ的方程為y=(x-1),設(shè)M(x1,y1),N(x2,y2),P(x3,y3),Q(x4,y4),由,得k2x2-(2k2+4)x+k2=0,由拋物線定義可知:|MN|=|MF2|+|NF2|=4+,由此能求出四邊形PMQN面積的最小值.
點評:本題考查橢圓方程和軌跡方程的求法,考查四邊形面積的最小值的求法.綜合性強,難度大,是高考的重點.解題時要認真審題,注意挖掘題設(shè)中的隱含條件,合理地進行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的離心率為e,兩焦點分別為F1、F2,拋物線C以F1為頂點、F2為焦點,點P為拋物線和橢圓的一個交點,若e|PF2|=|PF1|,則e的值為( 。
A、
1
2
B、
2
2
C、
3
3
D、以上均不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知橢圓的離心率為
2
2
,準(zhǔn)線方程為x=±8,求這個橢圓的標(biāo)準(zhǔn)方程;
(2)假設(shè)你家訂了一份報紙,送報人可能在早上6:30-7:30之間把報紙送到你家,你父親離開家去工作的時間在早上7:00-8:00之間,請你求出父親在離開家前能得到報紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點,M是橢圓上異于A,B的任意一點,已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點,求e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Ω的離心率為
1
2
,它的一個焦點和拋物線y2=-4x的焦點重合.
(1)求橢圓Ω的方程;
(2)若橢圓
x2    
a2
+
 y2   
b2
=1(a>b>0)
上過點(x0,y0)的切線方程為
 x0x   
a2
+
y0y    
b2
=1

①過直線l:x=4上點M引橢圓Ω的兩條切線,切點分別為A,B,求證:直線AB恒過定點C;
②是否存在實數(shù)λ使得|AC|+|BC|=λ•|AC|•|BC|,若存在,求出A的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案