【答案】
分析:(1)通過(guò)函數(shù)的圖象求出A,周期T,利用周期公式求出ω,圖象經(jīng)過(guò)(-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/0.png)
,0)以及φ的范圍,求出φ的值,得到函數(shù)的解析式.
(2)寫(xiě)出正弦曲線(xiàn)的單調(diào)遞增區(qū)間,使得函數(shù)的角對(duì)應(yīng)的函數(shù)式在這個(gè)區(qū)間,求出自變量x的取值范圍.
(3)當(dāng)正弦曲線(xiàn)取得最大值時(shí),對(duì)應(yīng)的2x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/1.png)
=2k
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/2.png)
,當(dāng)正弦曲線(xiàn)取得最小值時(shí),對(duì)應(yīng)的2x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/3.png)
=2k
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/4.png)
,通過(guò)解不等式做出函數(shù)對(duì)應(yīng)的自變量的取值.
解答:解:(1)由函數(shù)的圖象可知A=2,T=π,所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/5.png)
,ω=2,因?yàn)楹瘮?shù)的圖象經(jīng)過(guò)(-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/6.png)
.0),
所以0=2sin(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/7.png)
),又
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/8.png)
,所以φ=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/9.png)
;
所以函數(shù)的解析式為:y=2sin(2x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/10.png)
)
(2)∵正弦函數(shù)的單調(diào)遞增區(qū)間是[2k
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/11.png)
]
∴2x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/12.png)
∈[2k
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/13.png)
]
∴函數(shù)的單調(diào)遞增區(qū)間是[
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/14.png)
](k∈Z)
(3)∵當(dāng)正弦曲線(xiàn)取得最大值時(shí),對(duì)應(yīng)的2x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/15.png)
=2k
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/16.png)
當(dāng)正弦曲線(xiàn)取得最小值時(shí),對(duì)應(yīng)的2x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/17.png)
=2k
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/18.png)
∴當(dāng)f(x)取得最小值時(shí)x的集合為{x|x=kπ-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/19.png)
,k∈Z}
當(dāng)f(x)取得最大值時(shí)x的集合為{x|x=kπ+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101230245722150720/SYS201311012302457221507018_DA/20.png)
,k∈Z}.
點(diǎn)評(píng):題是基礎(chǔ)題,考查三角函數(shù)的圖象求函數(shù)的解析式的方法,考查學(xué)生的視圖能力,計(jì)算能力,是一種?碱}型.