1.已知tanα=-$\frac{2}{3}$,且角α是第二象限的角,求sinα,cosα的值.

分析 利用同角三角函數(shù)的基本關系的應用,以及三角函數(shù)在各個象限中的符號,求得sinα,cosα的值.

解答 解:∵tanα=$\frac{sinα}{cosα}$=-$\frac{2}{3}$,sin2α+cos2α=1,且角α是第二象限的角,
∴sinα=$\frac{2}{\sqrt{13}}$=$\frac{2\sqrt{13}}{13}$,cosα=-$\frac{3}{\sqrt{13}}$=-$\frac{3\sqrt{13}}{13}$.

點評 本題主要考查同角三角函數(shù)的基本關系的應用,以及三角函數(shù)在各個象限中的符號,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}滿足an+1=$\frac{(n+2){a}_{n}^{2}-{na}_{n}+n+1}{{a}_{n}^{2}+1}$,(n∈N+),且a1=1.
(1)求a2,a3,a4的值,猜測an,并用數(shù)學歸納法證明;
(2)比較3an與(n-1)2n+2n2的大小,并給出證明過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=2cos[ω(x+$\frac{π}{2}$)](ω>0),若f(x)在[-$\frac{π}{3}$,$\frac{2π}{3}$]上單調(diào)遞減,求ω的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.定義在R上的奇函數(shù)f(x)滿f(x)=-f(x+2),當x∈[0,1]時,f(x)=$\frac{x}{2}$,則f($\frac{4007}{2}$)=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知數(shù)列{an}滿足:an=$\frac{1}{{n}^{2}+n}$,且Sn=$\frac{10}{11}$,則n的值為(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)y=2sin($\frac{1}{2}$x+$\frac{π}{3}$).
(1)求函數(shù)的最大值、最小值和最小正周期;
(2)函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知sin($\frac{π}{4}$+x)=$\frac{12}{13}$,0<x<$\frac{π}{4}$,求$\frac{cos2x}{cos(\frac{π}{4}-x)}$的值為$\frac{10}{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α+\frac{3π}{2})}{cot(-α-π)si{n}^{2}(-π-α)}$.
(1)化簡f(α);
(2)若f(α)=$\frac{1}{2}$,求$\frac{sinα+cosα}{sinα-cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知直線l1:(m-3)x+my-1=0,l2:2x+(m-1)y+2=0,當m=-3或2時,l1⊥l2

查看答案和解析>>

同步練習冊答案