用一張圓弧長等于  分米,半徑是10分米的扇形膠片制作一個圓錐體模型,這個圓錐體的體積等于_    __立方分米.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在三棱錐P-ABC內,已知PA=PC=AC=,AB=BC=1,面PAC⊥面ABC,E是BC的中點.

(1)求直線PE與AC所成角的余弦值;
(2)求直線PB與平面ABC所成的角的正弦值;
(3)求點C到平面PAB的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

17.(本小題滿分8分)如圖,正方體ABCDA1B1C1D1中,EDD1中點,
(1)求證:BD1∥平面AEC;
(2)求:異面直線BDAD1所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在三棱柱ABCA1B1C1中,側AA1B1B是邊長為2的正方形,點C在平面AA1B1B上的射影H恰好為A1B的中點,且CH=,設D中點,

(Ⅰ)求證:平面;
(Ⅱ)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
如圖已知,點P是直角梯形ABCD所在平面外一點,PA⊥平面ABCD,, 。

(1)求證:;
(2)求直線PB與平面ABE所成的角
(3)求A點到平面PCD的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(本小題滿分12 分)
如圖,四棱錐的底面是邊長為的菱形,
,平面,,的中點,O為底面對角線的交點;
(1)求證:平面平面; 
(2)求二面角的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐P - ABCD中,ΔPCD為等邊三角形,四邊形ABCD為矩形,平面PDC丄平面ABCD,M,N、E分別是AB,PD,PC的中點,AB =2AD.

(I)求證DE丄MN;
(II)求二面角B-PA-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

球O的半徑為1,該球的一小圓O1上兩點A、B的球面距離為,則=(   )
A.                         B.                         C.                       D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分〗2分)
在三棱錐S -ABC中,是邊長為4的正三角形,點S在平面ABC上的射影恰為AC的中點,,M、N分別為AB、SB的中點.

(1) 證明AC丄SB;
(2) 求直線CN與平面ABC所成角的余弦值;
(3) 求點B到平面CMN的距離

查看答案和解析>>

同步練習冊答案