【題目】已知AB是圓O的直徑,C,D是圓上不同兩點(diǎn),且,,圓O所在平面.
(1)求直線(xiàn)PB與CD所成角;
(2)若PB與圓O所在平面所成角為,且,求二面角的余弦值.
【答案】(1);(2)
【解析】
(1)先得,由三角形全等得,由結(jié)合線(xiàn)面垂直判定定理可得平面,繼而,故可得直線(xiàn)與所成角;(2)建立如圖所示的空間直角坐標(biāo)系,設(shè),先求出,,求出平面的法向量為,平面的法向量,求出法向量夾角的余弦值即可得結(jié)果.
(1)∵是圓的直徑,∴,
∵,∴,∴,
∵圓所在平面,在圓所在平面內(nèi),
∴,
∵,∴平面,
∴.
即直線(xiàn)PB與CD所成角為.
(2)建立如圖所示的空間直角坐標(biāo)系,設(shè),
∵是直線(xiàn)與圓所在平面所成的平面角,且,
∴,
∵,∴,
∴,,
∴,,,,
,,,
設(shè)平面的法向量為:,
則,,
令,則,
同理解得平面的法向量:,
設(shè)二面角的大小為,,
即二面角的大小的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)M到定點(diǎn)F1(-2,0)和F2(2,0)的距離之和為.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)設(shè)N(0,2),過(guò)點(diǎn)P(-1,-2)作直線(xiàn)l,交曲線(xiàn)C于不同于N的兩點(diǎn)A,B,直線(xiàn)NA,NB的斜率分別為k1,k2,求k1+k2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】樹(shù)立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來(lái)越深入人心,已形成了全民自覺(jué)參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,大量的統(tǒng)計(jì)數(shù)據(jù)表明,參與調(diào)查者中關(guān)注此問(wèn)題的約占80%.現(xiàn)從參與調(diào)查的人群中隨機(jī)選出人,并將這人按年齡分組:第1組,第2組,第3組,第4 組,第5組,得到的頻率分布直方圖如圖所示
(1) 求的值
(2)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取人,再?gòu)倪@人中隨機(jī)抽取人進(jìn)行問(wèn)卷調(diào)查,求在第1組已被抽到人的前提下,第3組被抽到人的概率;
(3)若從所有參與調(diào)查的人中任意選出人,記關(guān)注“生態(tài)文明”的人數(shù)為,求的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓過(guò)定點(diǎn),圓心在拋物線(xiàn)上,、為圓與軸的交點(diǎn).
(1)求圓半徑的最小值;
(2)當(dāng)圓心在拋物線(xiàn)上運(yùn)動(dòng)時(shí),是否為一定值?請(qǐng)證明你的結(jié)論;
(3)當(dāng)圓心在拋物線(xiàn)上運(yùn)動(dòng)時(shí),記,,求的最大值,并求此時(shí)圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列滿(mǎn)足:①;②所有項(xiàng);③ .
設(shè)集合,將集合中的元素的最大值記為.換句話(huà)說(shuō), 是
數(shù)列中滿(mǎn)足不等式的所有項(xiàng)的項(xiàng)數(shù)的最大值.我們稱(chēng)數(shù)列為數(shù)列的
伴隨數(shù)列.例如,數(shù)列1,3,5的伴隨數(shù)列為1,1,2,2,3.
(1)若數(shù)列的伴隨數(shù)列為1,1,1,2,2,2,3,請(qǐng)寫(xiě)出數(shù)列;
(2)設(shè),求數(shù)列的伴隨數(shù)列的前100之和;
(3)若數(shù)列的前項(xiàng)和(其中常數(shù)),試求數(shù)列的伴隨數(shù)列前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù),當(dāng)時(shí),函數(shù)有極值.
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)若關(guān)于x的方程有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為拋物線(xiàn)的焦點(diǎn),點(diǎn)在拋物線(xiàn)上,且.
(1)求拋物線(xiàn)的方程;
(2)已知點(diǎn),延長(zhǎng)交拋物線(xiàn)于點(diǎn),證明:以點(diǎn)為圓心且與直線(xiàn)相切的圓,必與直線(xiàn)相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底,,為常數(shù)且)
(1)當(dāng)時(shí),討論函數(shù)在區(qū)間上的單調(diào)性;
(2)當(dāng)時(shí),若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中:
①已知點(diǎn),動(dòng)點(diǎn)滿(mǎn)足,則點(diǎn)的軌跡是一個(gè)圓;
②已知,則動(dòng)點(diǎn)的軌跡是雙曲線(xiàn);
③兩個(gè)隨機(jī)變量的線(xiàn)性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1;
④在平面直角坐標(biāo)系內(nèi),到點(diǎn)和直線(xiàn)的距離相等的點(diǎn)的軌跡是拋物線(xiàn);
正確的命題是_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com