15.現(xiàn)有4名同學去參加校學生會活動,共有甲、乙兩類活動可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪類活動,擲出點數(shù)為1或2的人去參加甲類活動,擲出點數(shù)大于2的人去參加乙類活動.
(1)求這4個人中恰有2人去參加甲類活動的概率;
(2)用X,Y分別表示這4個人中去參加甲、乙兩類活動的人數(shù).記ξ=|X-Y|,求隨機變量ξ的分布列與數(shù)學期望E(ξ).

分析 (1)依題意,這4個人中,每個人去參加甲游戲的概率為$\frac{1}{3}$,去參加乙游戲的人數(shù)的概率為$\frac{2}{3}$.設“這4個人中恰有i人去參加甲游戲”為事件Ai(i=0,1,2,3,4),故P(Ai)=${C}_{4}^{i}$($\frac{1}{3}$)i($\frac{2}{3}$)4-i.由此能求出這4個人中恰有2人去參加甲游戲的概率.
(2)ξ的所有可能取值為0,2,4,由于A1與A3互斥,A0與A4互斥,求出相應的概率,可得ξ的分布列與數(shù)學期望.

解答 解:(1)依題意,這4個人中,每個人去參加甲游戲的概率為$\frac{1}{3}$,去參加乙游戲的人數(shù)的概率為$\frac{2}{3}$.
設“這4個人中恰有i人去參加甲游戲”為事件Ai(i=0,1,2,3,4),故P(Ai)=${C}_{4}^{i}$($\frac{1}{3}$)i($\frac{2}{3}$)4-i
∴這4個人中恰有2人去參加甲游戲的概率為P(A2)=${C}_{4}^{2}(\frac{1}{3})^{2}(\frac{2}{3})^{2}=\frac{8}{27}$.
(2)ξ的所有可能取值為0,2,4,由于A1與A3互斥,A0與A4互斥,
故P(ξ=0)=P(A2)=$\frac{8}{27}$,
P(ξ=2)=P(A1)+P(A3)=$\frac{40}{81}$,
P(ξ=4)=P(A0)+P(A4)=$\frac{17}{81}$,
∴ξ的分布列是:

 ξ 0 2 4
 P$\frac{8}{27}$ $\frac{40}{81}$ $\frac{17}{81}$
數(shù)學期望Eξ=0×$\frac{8}{27}$+2×$\frac{40}{81}$+4×$\frac{17}{81}$=$\frac{148}{81}$.

點評 本題考查概率知識的求解,考查互斥事件的概率公式,考查離散型隨機變量的分布列與期望,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知2sinθ=1-cosθ,則tanθ=( 。
A.-$\frac{4}{3}$或0B.$\frac{4}{3}$或0C.-$\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.集合A={-1,0,1,2,3},B={x|log2(x+1)<2},則A∩B等于( 。
A.{-1,0,1,2}B.{0,1,2}C.{-1,0,1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知集合A={x|x2-x-2<0},B={y|y=ex,x<ln3},則A∪B=( 。
A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2|$\overrightarrow$|=2,且($\overrightarrow{a}$+3$\overrightarrow$)⊥($\overrightarrow{a}$-$\overrightarrow$),則$\overrightarrow{a}$,$\overrightarrow$夾角的余弦值為-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆湖南長沙長郡中學高三上周測十二數(shù)學(理)試卷(解析版) 題型:選擇題

已知點、是雙曲線)的左、右焦點,為坐標原點,點在雙曲線的右支上,且滿足,,則雙曲線的離心率的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆湖南長沙長郡中學高三上周測十二數(shù)學(理)試卷(解析版) 題型:選擇題

函數(shù)的圖像大致是( )

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(文)試卷(解析版) 題型:選擇題

已知,則等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,三棱錐P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E為PC的中點,點F在PA上,且2PF=FA.
(1)求證:BE⊥平面PAC.
(2)求平面ABC與平面BEF所成的二面角的平面角(銳角)的余弦值.

查看答案和解析>>

同步練習冊答案