3.已知曲線f(x)=$\left\{\begin{array}{l}{kx-k,x<1}\\{{x}^{2}-4x+3,x≥1}\end{array}\right.$與曲線g(x)=log2x有兩個(gè)交點(diǎn),則k的取值范圍為(-∞,$\frac{1}{ln2}$).

分析 先作出當(dāng)x≥1時(shí),f(x)=x2-4x+3與g(x)=log2x的圖象如圖,此時(shí)滿足f(x)與g(x)有兩個(gè)交點(diǎn),則條件轉(zhuǎn)化為當(dāng)x<1時(shí),函數(shù)f(x)=k(x-1)與g(x)沒(méi)有交點(diǎn),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)和數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:先作出當(dāng)x≥1時(shí),
f(x)=x2-4x+3與g(x)=log2x的圖象如圖:
此時(shí)f(x)與g(x)有兩個(gè)交點(diǎn),
則當(dāng)x<1時(shí),函數(shù)f(x)=k(x-1)與g(x)沒(méi)有交點(diǎn),
當(dāng)k<0時(shí),滿足條件,
當(dāng)k=0時(shí),f(x)=0,滿足條件.
當(dāng)k>0時(shí),
當(dāng)直線y=k(x-1)與g(x)在(1,0)處相切時(shí),
則g′(x)=$\frac{1}{xln2}$,
則g′(1)=$\frac{1}{ln2}$,此時(shí)k=$\frac{1}{ln2}$,
若當(dāng)x<1時(shí),函數(shù)f(x)=k(x-1)與g(x)沒(méi)有交點(diǎn),
在0<k<$\frac{1}{ln2}$,
綜上所述,k<$\frac{1}{ln2}$,
故答案為:(-∞,$\frac{1}{ln2}$).

點(diǎn)評(píng) 本題主要考查函數(shù)與方程的應(yīng)用,利用數(shù)形結(jié)合以及導(dǎo)數(shù)的應(yīng)用是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知定義在R上的偶函數(shù)f(x)的周期是4,當(dāng)x∈[0,2]時(shí),f(x)=|2x-2|,若g(x)=f(x)-|($\frac{1}{2}$)x-$\frac{1}{2}$|,則當(dāng)x∈[-12,12]時(shí),函數(shù)g(x)的零點(diǎn)個(gè)數(shù)是( 。
A.6B.12C.24D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=a(x+1)ln(x+1)圖象上的點(diǎn)(e2-1,f(e2-1))處的切線與直線x+3y+1=0垂直(e=2.71828…).
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)m>n>0時(shí),(1+em)${\;}^{{e}^{n}}$<(1+en)${\;}^{{e}^{m}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=(2a+1)x-ax2-(a+1)-lnx,其中a∈R.
(Ⅰ)當(dāng)a=1時(shí),求f(x)的極值;
(Ⅱ)當(dāng)x≥1時(shí),f(x)≥0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知A(2,π),B(2,$\frac{π}{2}$),圓C的極坐標(biāo)方程為ρ2-6ρcosθ+8ρsinθ+21=0.F為圓C上的任意一點(diǎn).
(1)寫(xiě)出圓C的參數(shù)方程;
(2)求△ABF的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)f(x)=x3+ax2+bx+1的導(dǎo)函數(shù)f′(x)滿足f′(x)=2a,f′(2)=-b,
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)設(shè)g(x)=f′(x)ex,求函數(shù)g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)函數(shù)f(x)=(a-1)x-lnx.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若方程f(x)=0有且僅有一個(gè)實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)函數(shù)f(x)=|2x+a|+|x-$\frac{1}{a}$|.
(Ⅰ)當(dāng)a=1時(shí),解不等式f(x)<x+3;
(Ⅱ)當(dāng)a>0時(shí),證明:f(x)≥$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.△ABC中,若D是BC的中點(diǎn),則$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)是真命題,類比該命題,將下面命題補(bǔ)充完整,使它也是真命題:在四面體A-BCD中,若G為△BCD的①,則$\overrightarrow{AG}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$+$\overrightarrow{AD}$),則①處應(yīng)該填( 。
A.中心B.重心C.外心D.垂線

查看答案和解析>>

同步練習(xí)冊(cè)答案