若定義在區(qū)間上的函數(shù)滿足:對于任意的,都有,且時(shí),有,的最大值、最小值分別為,則的值為(    )
A.2012B.2013C.4024D.4026
C

試題分析:設(shè),,,
,即所以是單調(diào)遞增函數(shù),其最大值和最小值是,,令代入得:,得,所以,,故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,∠C=90°,CA=CB=1,為△ABC內(nèi)一點(diǎn),過點(diǎn)P分別引三邊的平行線,與各邊圍成以P為頂點(diǎn)的三個(gè)三角形(圖中陰影部分),則這三個(gè)三角形的面積和的最小值為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù),若,則的值為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出定義:若(其中為整數(shù)),則叫做離實(shí)數(shù)最近的整數(shù),記作,即.在此基礎(chǔ)上給出下列關(guān)于函數(shù)的四個(gè)命題:
的定義域是,值域是
②點(diǎn)的圖像的對稱中心,其中;
③函數(shù)的最小正周期為
④函數(shù)上是增函數(shù).
則上述命題中真命題的序號是            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

的圖像是中心對稱圖形,則_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知x、y為正數(shù),則的最大值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲廠以x千克/小時(shí)的速度運(yùn)輸生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時(shí)可獲得利潤是100(5x+1-)元.
(1)要使生產(chǎn)該產(chǎn)品2小時(shí)獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某單位決定對本單位職工實(shí)行年醫(yī)療費(fèi)用報(bào)銷制度,擬制定年醫(yī)療總費(fèi)用在2萬元至10萬元(包括2萬元和10萬元)的報(bào)銷方案,該方案要求同時(shí)具備下列三個(gè)條件:①報(bào)銷的醫(yī)療費(fèi)用y(萬元)隨醫(yī)療總費(fèi)用x(萬元)增加而增加;②報(bào)銷的醫(yī)療費(fèi)用不得低于醫(yī)療總費(fèi)用的50%;③報(bào)銷的醫(yī)療費(fèi)用不得超過8萬元.
(1)請你分析該單位能否采用函數(shù)模型y=0.05(x2+4x+8)作為報(bào)銷方案;
(2)若該單位決定采用函數(shù)模型y=x-2lnx+a(a為常數(shù))作為報(bào)銷方案,請你確定整數(shù)a的值.(參考數(shù)據(jù):ln2≈0.69,ln10≈2.3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某銀行準(zhǔn)備新設(shè)一種定期存款業(yè)務(wù),經(jīng)預(yù)算,存款量與存款利率的平
方成正比,比例系數(shù)為k(k>0),貸款的利率為0.048,假設(shè)銀行吸收的存款能全部放貸出去.若存款利率為x(x∈(0,0.048)),則x為多少時(shí),銀行可獲得最大收益  (  ).
A.0.016B.0.032
C.0.024D.0.048

查看答案和解析>>

同步練習(xí)冊答案