分析 過(guò)點(diǎn)A作平面β的垂線,垂足為C,在β內(nèi)過(guò)C作CD⊥l于D,連結(jié)AD,由三垂線定理證出AD⊥l,可得∠ADC為二面角α-L-β的平面角.連線CB,由AC⊥β可得∠ABC為AB與平面β所成的角,再利用解直角三角形知識(shí),結(jié)合題中數(shù)據(jù)加以計(jì)算即可得出求出AB與平面β所成角的正弦值,根據(jù)同角三角函數(shù)的基本關(guān)系,即可AB與平面β所成角的正切值.
解答 解:過(guò)點(diǎn)A作平面β的垂線,垂足為C,在β內(nèi)過(guò)C作l的垂線,垂足為D.
連結(jié)AD,根據(jù)三垂線定理可得AD⊥L,
因此,∠ADC為二面角α-L-β的平面角,∠ADC=60°
又∵AB與L所成角為60°,
∴∠ABD=60°,
連結(jié)BC,可得BC為AB在平面β內(nèi)的射影,
∴∠ABC為AB與平面β所成的角.
設(shè)AD=2x,則Rt△ACD中,AC=ADsin60°=$\sqrt{3}$x,
Rt△ABD中,AB=$\frac{AD}{sin60°}$=$\frac{4\sqrt{3}}{3}$x
∴Rt△ABC中,sin∠ABC=$\frac{AC}{AB}$=34,
∴tan∠ABC=$\frac{{3\sqrt{7}}}{7}$
故答案為:$\frac{{3\sqrt{7}}}{7}$.
點(diǎn)評(píng) 本題考查了二面角的平面角,考查了線面角,考查同角三角函數(shù)的基本關(guān)系,考查了學(xué)生的空間想象和思維能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,$\sqrt{2}$) | B. | ($\sqrt{2}$,2) | C. | ($\sqrt{2}$,-2) | D. | (4,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $-\frac{1}{4}$ | C. | 0 | D. | $\frac{{5-3\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 北京今天一定降雨,而上海一定不降雨 | |
B. | 上海今天可能降雨,而北京可能沒(méi)有降雨 | |
C. | 北京和上海都可能沒(méi)降雨 | |
D. | 北京降雨的可能性比上海大 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com