【題目】是指大氣中直徑小于或等于微米的顆粒物,也稱為可入肺顆粒物.雖然只是地球大氣成分中含量很少的組分,但它對空氣質(zhì)量和能見度等有重要的影響.我國標(biāo)準(zhǔn)如下表所示.我市環(huán)保局從市區(qū)四個監(jiān)測點2018年全年每天的監(jiān)測數(shù)據(jù)中隨機抽取天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖如圖所示.

(Ⅰ)求這天數(shù)據(jù)的平均值;

(Ⅱ)從這天的數(shù)據(jù)中任取天的數(shù)據(jù),記表示其中空氣質(zhì)量達到一級的天數(shù),求的分布列和數(shù)學(xué)期望;

(Ⅲ)以天的日均值來估計一年的空氣質(zhì)量情況,則一年(按天計算)中大約有多少天的空氣質(zhì)量達到一級.

【答案】(Ⅰ)25(Ⅱ)分布列見解析,(Ⅲ)一年中平均有天的空氣質(zhì)量達到一級.

【解析】

(Ⅰ)根據(jù)平均數(shù)公式求結(jié)果,(Ⅱ)先求隨機變量,再分別求對應(yīng)概率,列表得分布列,最后根據(jù)數(shù)學(xué)期望公式求結(jié)果,(Ⅲ)先判斷隨機變量服從二項分布,再根據(jù)二項分布期望公式得結(jié)果.

(Ⅰ)解:隨機抽取天的數(shù)據(jù)的平均數(shù)為:

(Ⅱ)依據(jù)條件,的可能值為,

當(dāng)時,,

當(dāng)時,

當(dāng)時,

當(dāng)時,,

所以其分布列為:

數(shù)學(xué)期望為:

(Ⅲ)依題意可知,一年中每天空氣質(zhì)量達到一級的概率為,一年中空氣質(zhì)量達到一級的天數(shù)為,則,

(天)

所以一年中平均有天的空氣質(zhì)量達到一級.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在四棱錐中,底面是邊長為的正方形,是正三角形,,分別是的中點。

1)求證:;

2)求平面與平面所成銳二面角的大小;

3)線段上是否存在一個動點,使得直線與平面所成角為,若存在,求線段的長度,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐PABCD中,底面是邊長為2的菱形,∠BAD60°PBPD2,PA,ACBDO

1)設(shè)平面ABP平面DCPl,證明:lAB

2)若EPA的中點,求三棱錐PBCE的體積VPBCE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)某相鄰兩支圖象與坐標(biāo)軸分別變于點,則方程所有解的和為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線lyx3經(jīng)過橢圓1ab0)的一個焦點,且點(0b)到直線l的距離為2

1)求橢圓E的方程;

2AB、C是橢圓E上的三個動點,AB關(guān)于原點對稱,且|CA||CB|,求△ABC面積的最小值,并求此時點C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的左右焦點分別為,,點為短軸的一個端點,.

1)求橢圓C的方程;

2)如圖,過右焦點,且斜率為k)的直線l與橢圓C相交于D,E兩點,A為橢圓的右頂點,直線,分別交直線于點M,N,線段的中點為P,記直線的斜率為.試問是否為定值?若為定值,求出該定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點為,拋物線過點.

(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程與其準(zhǔn)線的方程;

(Ⅱ)過點作直線與拋物線交于,兩點,過,分別作拋物線的切線,證明兩條切線的交點在拋物線的準(zhǔn)線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小組共有五位同學(xué),他們的身高(單位:米)以及體重指標(biāo)(單位:千克/2

如下表所示:


A

B

C

D

E

身高

1.69

1.73

1.75

1.79

1.82

體重指標(biāo)

19.2

25.1

18.5

23.3

20.9

(Ⅰ)從該小組身高低于的同學(xué)中任選人,求選到的人身高都在以下的概率

(Ⅱ)從該小組同學(xué)中任選人,求選到的人的身高都在以上且體重指標(biāo)都在中的概率.

查看答案和解析>>

同步練習(xí)冊答案