已知函數(shù)f(x)=ax(a>1).

(1)證明:函數(shù)f(x)在(-1,+∞)上為增函數(shù);

(2)用反證法證明方程f(x)=0沒有負(fù)數(shù)根.

答案:
解析:

  解析:(1)任取x1,x2∈(-1,+∞),不妨設(shè)x1<x2,則x2-x1>0,>1,且>0,

  ∴(-1)>0.

  又∵x1+1>0,x2+1>0,

  ∴

  =>0.

  于是f(x2)-f(x1)=>0,故函數(shù)f(x)在(-1,+∞)上為增函數(shù).

  (2)證法一:設(shè)存在x0<0(x0≠-1),滿足f(x0)=0,則,且0<<1,

  ∴0<<1,即<x0<2.與假設(shè)x0<0矛盾,故方程f(x)=0沒有負(fù)數(shù)根.

  證法二:設(shè)存在x0<0(x0≠-1),滿足f(x0)=0,

 、偃簦1<x0<0,則<-2,<1,

  ∴f(x0)<-1與f(x0)=0矛盾.

 、谌魓0<-1,則>0,>0,∴f(x0)>0與f(x0)=0矛盾.

  故方程f(x)=0沒有負(fù)數(shù)根.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省南昌市高一5月聯(lián)考數(shù)學(xué)卷(解析版) 題型:解答題

已知函數(shù)f(x)= (a、b為常數(shù)),且方程f(x)-x+12=0有兩個(gè)實(shí)根為x1=3,x2=4.

(1)求函數(shù)f(x)的解析式;

(2)設(shè)k>1,解關(guān)于x的不等式f(x)< .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆遼寧盤錦市高一第一次階段考試數(shù)學(xué)試卷(解析版) 題型:解答題

(12分)已知函數(shù)f(x)= (a,b為常數(shù),且a≠0),滿足f(2)=1,方程f(x)=x有唯一實(shí)數(shù)解,求函數(shù)f(x)的解析式和f[f(-4)]的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省萊蕪市高三上學(xué)期10月測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分l2分)

已知函數(shù)f(x)=a

 

(1)求證:函數(shù)yf(x)在(0,+∞)上是增函數(shù);

 

(2)f(x)<2x在(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省十二校高三第一次聯(lián)考數(shù)學(xué)文卷 題型:解答題

( (本小題滿分13分)

已知函數(shù)f(x)=(a-1)xaln(x-2),(a<1).

(1)討論函數(shù)f(x)的單調(diào)性;

(2)設(shè)a<0時(shí),對(duì)任意x1x2∈(2,+∞),<-4恒成立,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高一期末考試文科數(shù)學(xué) 題型:解答題

(12分)已知函數(shù)f(X)=㏒a(ax-1) (a>0且a≠1)

     (1)求函數(shù)的定義域   (2)討論函數(shù)f(X)的單調(diào)性

 

查看答案和解析>>

同步練習(xí)冊(cè)答案