分析 (1)由題意可得Sn+1+1=2(Sn+1),即有數(shù)列{Sn+1}是以S1+1=2,2為公比的等比數(shù)列,運(yùn)用等比數(shù)列的通項(xiàng)公式和數(shù)列的遞推式,可得所求通項(xiàng)公式;
(2)求出bn=n+$\frac{n}{{a}_{n}}$=n+n•($\frac{1}{2}$)n-1,運(yùn)用數(shù)列的求和方法:分組求和和錯位相減法,結(jié)合等差數(shù)列和等比數(shù)列的求和公式,化簡計(jì)算即可得到所求和.
解答 解:(1)a1=1,Sn+1-2Sn=1,
即為Sn+1+1=2(Sn+1),
即有數(shù)列{Sn+1}是以S1+1=2,2為公比的等比數(shù)列,
則Sn+1=2•2n-1=2n,
即Sn=2n-1,n∈N*,
當(dāng)n≥2時(shí),an=Sn-Sn-1=2n-1-(2n-1-1)=2n-1,
上式對n=1也成立,
則數(shù)列{an}的通項(xiàng)公式為an=2n-1,n∈N*;
(2)bn=n+$\frac{n}{{a}_{n}}$=n+n•($\frac{1}{2}$)n-1,
前n項(xiàng)和Tn=(1+2+3+…+n)+[1•1+2•($\frac{1}{2}$)+3•($\frac{1}{2}$)2+…+n•($\frac{1}{2}$)n-1],
設(shè)Mn=1•1+2•($\frac{1}{2}$)+3•($\frac{1}{2}$)2+…+n•($\frac{1}{2}$)n-1,
$\frac{1}{2}$Mn=1•$\frac{1}{2}$+2•($\frac{1}{2}$)2+3•($\frac{1}{2}$)3+…+n•($\frac{1}{2}$)n,
相減可得,$\frac{1}{2}$Mn=1+$\frac{1}{2}$+($\frac{1}{2}$)2+($\frac{1}{2}$)3+…+($\frac{1}{2}$)n-1-n•($\frac{1}{2}$)n
=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n,
化簡可得Mn=4-(n+2)•($\frac{1}{2}$)n-1,
則Tn=$\frac{1}{2}$n(n+1)+4-(n+2)•($\frac{1}{2}$)n-1.
點(diǎn)評 本題考查數(shù)列的通項(xiàng)的求法,注意運(yùn)用構(gòu)造數(shù)列法,考查等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列數(shù)列的求和方法:分組求和和錯位相減法,考查化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{5}{2}$ | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{5}$+$\frac{2}{5}$i | B. | -$\frac{1}{5}$-$\frac{2}{5}$i | C. | -$\frac{1}{3}$+$\frac{2}{3}$i | D. | -$\frac{1}{3}$-$\frac{2}{3}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com