【題目】已知直線l過點P(1,2),根據(jù)下列條件分別求出直線l的方程(斜截式方程):
(1)直線l與垂直;
(2)l在x軸、y軸上的截距之和等于0.
【答案】(1)yx2;(2)y=2x或y=x+1.
【解析】
(1)先求出直線l的斜率,再寫出直線的點斜式方程整理即得解;(2)分直線經(jīng)過原點和不經(jīng)過原點兩種情況討論得解.
(1)根據(jù)題意,直線l與垂直,則直線l的斜率k,
直線l的方程為y﹣2(x﹣1),變形可得yx2,
故直線l的方程為yx2;
(2)根據(jù)題意,分2種情況:
若直線l經(jīng)過原點,其方程為y=2x,
若直線l不經(jīng)過原點,則l在x軸、y軸上的截距互為相反數(shù),
則直線l的斜率k=1,
所以直線l的方程為y﹣2=(x﹣1),變形可得y=x+1,
故直線l的方程為y=2x或y=x+1.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,,為自然對數(shù)的底數(shù)),若對于恒成立.
(1)求實數(shù)的值;
(2)證明:存在唯一極大值點,且.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解七班學生喜愛打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 | 不喜愛打籃球 | 合 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為.
(1)請將上面的列聯(lián)表補充完整(不用寫計算過程);
(2)能否在犯錯誤的概率不超過0.005的前提下認為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取2人進一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為,求的分布列與期望.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05[ | 0.025 | 0.01 | 0.005 | 0.001 | |
2.072 | 2.70 | 3.841 | 5.024 | 6.635 | 7.879 | 10.82 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知矩形中,、分別是、上的點,,,,是的中點,現(xiàn)沿著翻折,使平面平面.
(1)為的中點,求證:平面.
(2)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩個平面垂直,下列命題中錯誤的是( 。
A.兩個平面內(nèi)分別垂直于交線的兩條直線相互垂直
B.一個平面內(nèi)的任一條直線必垂直于另一個平面.
C.一個平面內(nèi)存在直線垂直于另一個平面
D.一個平面內(nèi)的任意一條直線都垂直于另一個平面內(nèi)的無數(shù)條直線
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義在上的函數(shù),如果對于任意的,存在常數(shù)都有成立,則稱為函數(shù)在上的一個上界.已知函數(shù).
(1)當時,試判斷函數(shù)在上是否存在上界,若存在請求出該上界,若不存在請說明理由;
(2)若函數(shù)在上的上界為3,求出實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長軸長為4,且短軸長是長軸長的一半.
(1)求橢圓的方程;
(2)經(jīng)過點作直線,交橢圓于,兩點.如果恰好是線段的中點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:
直徑 | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計 |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計算,樣本的平均值,標準差,以頻率值作為概率的估計值,用樣本估計總體.
(1)將直徑小于等于或直徑大于的零件認為是次品,從設(shè)備的生產(chǎn)流水線上隨意抽取3個零件,計算其中次品個數(shù)的數(shù)學期望;
(2)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進行評判(表示相應事件的概率):①;②;③.評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁,試判斷設(shè)備的性能等級并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),x∈R.
(1)判斷函數(shù)的奇偶性,并說明理由;
(2)利用函數(shù)單調(diào)性定義證明:在上是增函數(shù);
(3)若對任意的x∈R,任意的 恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com