【題目】如圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖

(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關系,請用相關系數(shù)加以說明;
(Ⅱ)建立y關于t的回歸方程(系數(shù)精確到0.01),預測2017年我國生活垃圾無害化處理量.
參考數(shù)據(jù): =9.32, yi=40.17, =0.55, ≈2.646.
參考公式:相關系數(shù)r= 回歸方程 = + t 中斜率和截距的最小二乘估計公式分別為: = , =

【答案】解:(Ⅰ)由折線圖看出,y與t之間存在較強的正相關關系,∵ =9.32, yi=40.17, =0.55,
∴r≈ ≈0.993,
∵0.993>0.75,
故y與t之間存在較強的正相關關系;
(Ⅱ)由 ≈1.331及(Ⅰ)得 = ≈0.103,
=1.331﹣0.103×4=0.92.
所以,y關于t的回歸方程為: =0.92+0.10t.
將2017年對應的t=10代入回歸方程得: =0.92+0.10×10=1.92
所以預測2017年我國生活垃圾無害化處理量將約1.92億噸
【解析】(Ⅰ)由折線圖看出,y與t之間存在較強的正相關關系,將已知數(shù)據(jù)代入相關系數(shù)方程,可得答案;(Ⅱ)根據(jù)已知中的數(shù)據(jù),求出回歸系數(shù),可得回歸方程,2017年對應的t值為10,代入可預測2017年我國生活垃圾無害化處理量.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)若在點處的切線與直線垂直,求實數(shù)的值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)討論函數(shù)在區(qū)間上零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,角A,B,C的對邊分別為a,b,c,且cosC=
(1)求角B的大小;
(2)若BD為AC邊上的中線,cosA= ,BD= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時,f(x)=log (﹣x+1).
(1)求f(x)的解析式;
(2)若f(a﹣1)<﹣1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點,橢圓的左,右頂點分別為.過點的直線與橢圓交于兩點,且的面積是的面積的3倍.

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸垂直,是橢圓上位于直線兩側(cè)的動點,且滿足,試問直線的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 =1(a>b>0)的左右焦點F1、F2 , 離心率為 ,雙曲線方程為 =1(a>0,b>0),直線x=2與雙曲線的交點為A、B,且|AB|=
(Ⅰ)求橢圓與雙曲線的方程;
(Ⅱ)過點F2的直線l與橢圓交于M、N兩點,交雙曲線與P、Q兩點,當△F1MN(F1為橢圓的左焦點)的內(nèi)切圓的面積取最大值時,求△F1PQ的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)= ,g(x)=
(1)當1≤x<2時,求g(x);
(2)當x∈R時,求g(x)的解析式,并畫出其圖象;

(3)求方程xf[gx]=2g[f(x)]的解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:x2+y2﹣2x+4y﹣4=0,是否存在斜率為1的直線l,使l被圓C截得的弦長AB為直徑的圓過原點,若存在求出直線的方程l,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= + 的圖象關于y軸對稱,且a>0.
(1)求a的值;
(2)求f(x)在[0,2]的值域.

查看答案和解析>>

同步練習冊答案