13.已知雙曲線標準方程為:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),一條漸近線方程y=3x,則雙曲線的離心率是$\sqrt{10}$.

分析 根據(jù)雙曲線漸近線的方程進行求解即可.

解答 解:∵線標準方程為:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線為為y=±$\frac{a}$x,
∴$\frac{a}$=3,
則離心率e=$\frac{c}{a}$=$\sqrt{\frac{{c}^{2}}{{a}^{2}}}$=$\sqrt{1+(\frac{a})^{2}}$=$\sqrt{1+9}=\sqrt{10}$,
故答案為:$\sqrt{10}$

點評 本題主要考查雙曲線離心率的計算,根據(jù)雙曲線漸近線的條件建立方程關系是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.寫出角的終邊在陰影中的角的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在區(qū)間[-3,3]上隨機取一個數(shù)x,使得函數(shù)f(x)=ln(1-x)+$\sqrt{x+2}$有意義的概率為( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.某產品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如表:
廣告費用x(萬元)4235
銷售額y(萬元)49263954
根據(jù)上表可得回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中的$\stackrel{∧}$為9.4,據(jù)此模型預報廣告費用為7萬元時,銷售額為74.9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)=x2+2x+3在[m,0]上的最大值為3,最小值為2,則實數(shù)m的取值范圍是[-2,-1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{x+a}{e^x}$(a∈R,e為自然對數(shù)的底數(shù),e≈2.71828).
(1)若曲線y=f(x)在x=0處的切線的斜率為-1,求實數(shù)a的值;
(2)求f(x)在[-1,1]上的最大值g(a);
(3)當a=0時,若對任意的x∈(0,1),恒有f(x)>f($\frac{m}{x}$),求正實數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設關于x的一元二次方程x2+ax-$\frac{b^2}{4}$+1=0.
(1)若a是從1,2,3這三個數(shù)中任取的一個數(shù),b是從0,1,2這三個數(shù)中任取的一個數(shù),求上述方程中有實根的概率;
(2)若a是從區(qū)間[0,3]中任取的一個數(shù),b是從區(qū)間[0,2]中任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.從甲地到乙地有3條公路、2條鐵路,某人要從甲地到乙地共有n種不同的走法,則n=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.5名男生、2名女生站成一排照像:
(1)兩名女生都不站在兩端,有多少不同的站法?
(2)兩名女生要相鄰,有多少種不同的站法?
(3)兩名女生不相鄰,有多少種不同的站法?
(4)女生甲不在左端,女生乙不在右端.有多少不同的站法?

查看答案和解析>>

同步練習冊答案