【題目】已知圓軸上的動點,,分別切圓,兩點.

)當的坐標為時,求切線,的方程.

)求四邊形面積的最小值.

)若,求直線的方程.

【答案】(1),;(2);(3)

【解析】試題分析:(1)設切線點斜式方程,根據(jù)圓心到切線距離等于半徑列方程求斜率,最后考慮斜率不存在的情形是否滿足題意(2),

,所以轉化為求圓心到軸上點距離最小值(3)由垂徑定理可得圓心到弦的距離,再根據(jù)射影定理可得,解得Q坐標,即得直線的方程.

試題解析:)當過的直線無斜率時,直線方程為,顯然與圓相切,符合題意;

當過的直線有斜率時,設切線方程為,即,

∴圓心到切線的距離,

解得,

綜上,切線,的方程分別為,

,

,

∴當軸時,取得最小值,

∴四邊形面積的最小值為

)圓心到弦的距離為,

,則,又,

,解得

,

∴直線的方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】將三顆骰子各擲一次,記事件A=“三個點數(shù)都不同”,B=“至少出現(xiàn)一個6點”,則條件概率P(A|B),P(B|A)分別是(
A. ,
B. ,
C. ,
D. ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線y2=4x的準線與x軸交于A點,焦點是F,P是位于x軸上方的拋物線上的任意一點,令m= ,當m取得最小值時,PA的斜率是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為辦好省運會,計劃招募各類志愿者1.2萬人.為做好宣傳工作,招募小組對15-40歲的人群隨機抽取了100人,回答省運會的有關知識,根據(jù)統(tǒng)計結果制作了如下的統(tǒng)計圖表1、表2

I)分別求出表2中的a、x的值;

II)若在第2、3、4組回答完全正確的人中,用分層抽樣的方法抽取6人,則各組應分別抽取多少人?

III)在(II)的前提下,招募小組決定在所抽取的6人中,隨機抽取2人頒發(fā)幸運獎,求獲獎的2人均來自第3組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P(2,-1)

(1)求過P點且與原點距離為2的直線l的方程;

(2)求過P點且與原點距離最大的直線l的方程,最大距離是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為,對任意都有,且當時, .

(1)試判斷的單調性,并證明;

(2),

①求的值;

②求實數(shù)的取值范圍,使得方程有負實數(shù)根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),給出下列結論:

(1)若對任意,且,都有,則為R上的減函數(shù);

(2)若為R上的偶函數(shù),且在內是減函數(shù), (-2)=0,則>0解集為(-2,2);

(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);

(4)t為常數(shù),若對任意的,都有關于對稱。

其中所有正確的結論序號為_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時, f(x)=-x+1

(1)求f(0),f(2);

(2)求函數(shù)f(x)的解析式;

(3)若f(a-1)<3,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a∈R,函數(shù)f(x)=ex+ax2 , g(x)是f(x)的導函數(shù),
(1)當a>0時,求證:存在唯一的x0∈(﹣ ,0),使得g(x0)=0;
(2)若存在實數(shù)a,b,使得f(x)≥b恒成立,求a﹣b的最小值.

查看答案和解析>>

同步練習冊答案