11.為推廣漳州“三寶”,某商場(chǎng)推出“砸金蛋”促銷活動(dòng),單筆購(gòu)滿50元可以玩一次“砸金蛋”游戲,每次游戲可以砸兩個(gè)金蛋,每砸一個(gè)金蛋可以等可能地得到“水仙花卡片”,“片仔癀卡片”和“八寶印泥卡片”中的一張,如果一次游戲中可以得到相同的卡片,那么該商場(chǎng)贈(zèng)送一份獎(jiǎng)品,則玩一次該游戲可以獲贈(zèng)一份獎(jiǎng)品的概率是$\frac{1}{3}$.

分析 “水仙花卡片”,“片仔癀卡片”和“八寶印泥卡片”分別用a,b,c表示,列舉出所有的基本事件,再根據(jù)概率公式計(jì)算即可.

解答 解:“水仙花卡片”,“片仔癀卡片”和“八寶印泥卡片”分別用a,b,c表示,
一次游戲中,得到的卡片的基本事件有aa,ab,ba,ac,ca,bc,cb,bb,cc共9種,
其中以得到相同的卡片有aa,bb,cc,共3種,
故玩一次該游戲可以獲贈(zèng)一份獎(jiǎng)品的概率是$\frac{3}{9}$=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$

點(diǎn)評(píng) 本題考查了古典概率的問(wèn)題,關(guān)鍵是列舉,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.執(zhí)行如圖所示的程序框圖.設(shè)當(dāng)箭頭a指向①處時(shí),輸出的S的值為m,當(dāng)箭頭a指向②處時(shí),輸出S的值為n,則m+n=( 。
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知{an}滿足a1=1,an+an+1=($\frac{1}{4}$)n(n∈N*),Sn=a1+4a2+42a3+…+4n-1an,則5Sn-4nan=( 。
A.n-1B.nC.2nD.n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且一條準(zhǔn)線與拋物線y2=$\frac{16\sqrt{3}}{3}$x的準(zhǔn)線重合.
(1)求橢圓C的方程;
(2)過(guò)原點(diǎn)作直線l交橢圓于A、B兩點(diǎn),M為橢圓上異于點(diǎn)A、B的一點(diǎn).
若直線AM和BM均不垂直于x軸,且它們的斜率分別為k1和k2,求怔:k1k2為定值,并求出該定值;
②若|AM|=|BM|,求△ABM的面積的最小值以及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx-2sin2x,x∈R,則函數(shù)f(x)的單調(diào)遞增區(qū)間是( 。
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈ZB.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z
C.[2kπ-$\frac{π}{3}$,2kπ+$\frac{π}{6}$],k∈ZD.[2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{3}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知兩點(diǎn)A(0,1),B(1,0),且|MA|=2|MB|,求證:點(diǎn)M的軌跡方程為(x-$\frac{4}{3}$)2+(y+$\frac{1}{3}$)2=$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.${∫}_{0}^{2π}$|cosx|dx=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且S△ABC=3,0≤$\overrightarrow{AB}$•$\overrightarrow{AC}$≤6,函數(shù)f(θ)=2sin2($\frac{π}{4}$+θ)-$\sqrt{3}$cos2θ.
(1)求角A的取值范圍;
(2)求f(A)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若直線ax-by=2(a>0,b>0)過(guò)圓x2+y2-4x+2y+1=0的圓心,則ab的最大值為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案