【題目】射擊測(cè)試有兩種方案,方案1:先在甲靶射擊一次,以后都在乙靶射擊;方案2:始終在乙靶射擊,某射手命中甲靶的概率為,命中一次得3分;命中乙靶的概率為,命中一次得2分,若沒有命中則得0分,用隨機(jī)變量表示該射手一次測(cè)試?yán)塾?jì)得分,如果的值不低于3分就認(rèn)為通過測(cè)試,立即停止射擊;否則繼續(xù)射擊,但一次測(cè)試最多打靶3次,每次射擊的結(jié)果相互獨(dú)立。

(1)如果該射手選擇方案1,求其測(cè)試結(jié)束后所得分的分布列和數(shù)學(xué)期望E

(2)該射手選擇哪種方案通過測(cè)試的可能性大?請(qǐng)說明理由。

【答案】(1)的分布列為:

(2)選擇方案2通過測(cè)試的概率更大.

【解析】

試題分析:(1)命中甲靶則結(jié)束,若甲靶不中,則乙靶必須射擊兩次,共有5種射擊情況,4種得分情況,即,依次列出概率,再根據(jù)數(shù)學(xué)期望定義求數(shù)學(xué)期望,(2)實(shí)質(zhì)比較兩個(gè)方案概率大。悍桨1通過測(cè)試的情況為:甲中,甲不中乙中兩次;方案2通過測(cè)試的情況為:乙前兩次中,乙前兩次僅中一次第三次中.

試題解析:甲靶射擊命中記作,不中記作;在乙靶射擊命中記作,不中記作,

其中 2

(1)的所有可能取值為,則

,

,

的分布列為:

7

(2)射手選擇方案/span>1通過測(cè)試的概率為,選擇方案2通過測(cè)試的概率為 ,

;

, 9

因?yàn)?/span>,所以應(yīng)選擇方案2通過測(cè)試的概率更大. 10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分16分)已知為實(shí)數(shù),函數(shù),函數(shù)

1)當(dāng)時(shí),令,求函數(shù)的極值;

2)當(dāng)時(shí),令,是否存在實(shí)數(shù),使得對(duì)于函數(shù)定義域中的任意實(shí)數(shù),均存在實(shí)數(shù),有成立,若存在,求出實(shí)數(shù)的取值集合;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=x3+x(x∈R),當(dāng) 時(shí),f(msinθ)+f(1﹣m)>0恒成立,則實(shí)數(shù)m的取值范圍是(
A.(﹣∞,1)
B.(﹣∞,0)
C.(﹣∞,
D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先把正弦函數(shù)y=sinx圖象上所有的點(diǎn)向左平移 個(gè)長(zhǎng)度單位,再把所得函數(shù)圖象上所有的點(diǎn)的縱坐標(biāo)縮短到原來的 倍(橫坐標(biāo)不變),再將所得函數(shù)圖象上所有的點(diǎn)的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),則所得函數(shù)圖象的解析式是(
A.y=2sin( x+
B.y= sin(2x﹣
C.y=2sin( x﹣
D.y= sin(2x+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于給定的大于1的正整數(shù)n,設(shè),其中,且記滿足條件的所有x的和為,

(1)求(2)設(shè),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】=(sinx,cosx), =(sinx,sinx), =(﹣1,0)

(1)若x= ,求 的夾角θ;
(2)若x∈[﹣ , ],f(x)=λ 的最大值為 ,求λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某社區(qū)居民的家庭年收入所年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表:

收入x (萬元)

8.2

8.6

10.0

11.3

11.9

支出y (萬元)

6.2

7.5

8.0

8.5

9.8

據(jù)上表得回歸直線方程 = x+ ,其中 =0.76, = ,據(jù)此估計(jì),該社區(qū)一戶收入為15萬元家庭年支出為(
A.11.4萬元
B.11.8萬元
C.12.0萬元
D.12.2萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD.
(1)求證:平面PAB⊥平面PDC
(2)在線段AB上是否存在一點(diǎn)G,使得二面角C﹣PD﹣G的余弦值為 .若存在,求 的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.則實(shí)數(shù)m的取值范圍為(
A.[﹣2,2]
B.[2,+∞)
C.[0,+∞)
D.(﹣∞,﹣2]∪[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案