目前四年一度的世界杯在巴西舉行,為調(diào)查哈三中高二學(xué)生是否熬夜看世界杯用簡(jiǎn)單
隨機(jī)抽樣的方法調(diào)查了110名高二學(xué)生,結(jié)果如下表:
性別
是否熬夜看球
4020
2030
(Ⅰ)若哈三中高二學(xué)年共有1100名學(xué)生,試估計(jì)大約有多少學(xué)生熬夜看球;
(Ⅱ)能否有99%以上的把握認(rèn)為“熬夜看球與性別有關(guān)”?
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專(zhuān)題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(Ⅰ)110名學(xué)生熬夜看球,有60名,故1100名學(xué)生,大約有600名學(xué)生熬夜看球;
(Ⅱ)代入公式計(jì)算k的值,和臨界值表比對(duì)后即可得到答案.
解答: 解:(Ⅰ)110名學(xué)生熬夜看球,有60名,故1100名學(xué)生,大約有600名學(xué)生熬夜看球;
(Ⅱ)K2=
110×(40×30-20×20)2
60×50×60×50
≈7.82>6.635,
∴能有99%以上的把握認(rèn)為“熬夜看球與性別有關(guān)”.
點(diǎn)評(píng):本題是一個(gè)獨(dú)立性檢驗(yàn),我們可以利用臨界值的大小來(lái)決定是否拒絕原來(lái)的統(tǒng)計(jì)假設(shè),若值較大就拒絕假設(shè),即拒絕兩個(gè)事件無(wú)關(guān).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱柱ABC-A1B1C1體積為V,M是AA1中點(diǎn),求四棱錐M-BCC1B1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x2
45
+
y2
m
=1(0<m<45)的焦點(diǎn)分別是F1和F2,已知橢圓的離心率e=
5
3
,過(guò)橢圓的中心O作直線與橢圓交于A,B兩點(diǎn),O為原點(diǎn),若△ABF2的面積是20,求:
(1)m的值
(2)直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
1
3
cos(2x-
π
4
)+1的最大值,及此時(shí)自變量x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-
1
2
cos2x,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且滿足2bcosA=2c-
3
a,求f(B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為常數(shù),求數(shù)列a,2a2,3a2,…,nan的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E是PC的中點(diǎn),AD=CD=1,DB=2
2

(Ⅰ)求證:PA∥平面BDE;
(Ⅱ)求證:AC⊥平面PBD;
(Ⅲ)求直線BC與平面PBD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
ex
1+ax2
,其中a為正實(shí)數(shù).
(1)求f(x)在x=0處的切線方程;
(2)若f(x)為R上的單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知長(zhǎng)方體ABCD-A1B1C1D1的高為h,∠AB1D=30°,∠BB1D=45°,則它的體積是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案