【題目】某市調(diào)硏機(jī)構(gòu)對(duì)該市工薪階層對(duì)樓市限購令態(tài)度進(jìn)行調(diào)查,抽調(diào)了50名市民,他們?cè)率杖腩l數(shù)分布表和對(duì)樓市限購令贊成人數(shù)如下表:

月收入(單位:百元)

頻數(shù)

5

10

5

5

頻率

0.1

0.2

0.1

0.1

贊成人數(shù)

4

8

12

5

2

1

1)若所抽調(diào)的50名市民中,收入在的有15名,求,,的值,并完成頻率分布直方圖.

2)若從收入(單位:百元)在的被調(diào)查者中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,選中的2人中恰有人贊成樓市限購令,求的分布列與數(shù)學(xué)期望.

3)從月收入頻率分布表的6組市民中分別隨機(jī)抽取3名市民,恰有一組的3名市民都不贊成樓市限購令,根據(jù)表格數(shù)據(jù),判斷這3名市民來自哪組的可能性最大?請(qǐng)直接寫出你的判斷結(jié)果.

【答案】1,頻率分布直方圖見解析;(2)分布列見解析,;(3)來自的可能性最大.

【解析】

1)由頻率和為可知,根據(jù)求得,從而計(jì)算得到頻數(shù),補(bǔ)全頻率分布表后可畫出頻率分布直方圖;

2)首先確定的所有可能取值,由超幾何分布概率公式可計(jì)算求得每個(gè)取值對(duì)應(yīng)的概率,由此得到分布列;根據(jù)數(shù)學(xué)期望的計(jì)算公式可求得期望;

3)根據(jù)中不贊成比例最大可知來自的可能性最大.

1)由頻率分布表得:,即

收入在的有名,,,,

則頻率分布直方圖如下:

2收入在中贊成人數(shù)為,不贊成人數(shù)為

可能取值為,

;;,

的分布列為:

3)來自的可能性更大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年10月28日,重慶公交車墜江事件震驚全國(guó),也引發(fā)了廣大群眾的思考——如何做一個(gè)文明的乘客.全國(guó)各地大部分社區(qū)組織居民學(xué)習(xí)了文明乘車規(guī)范.社區(qū)委員會(huì)針對(duì)居民的學(xué)習(xí)結(jié)果進(jìn)行了相關(guān)的問卷調(diào)查,并將得到的分?jǐn)?shù)整理成如圖所示的統(tǒng)計(jì)圖.

(Ⅰ)求得分在上的頻率;

(Ⅱ)求社區(qū)居民問卷調(diào)查的平均得分的估計(jì)值;(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)

(Ⅲ)以頻率估計(jì)概率,若在全部參與學(xué)習(xí)的居民中隨機(jī)抽取5人參加問卷調(diào)查,記得分在間的人數(shù)為,求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)=x2+blnx+1),其中b0

1)若b=﹣12,求fx)在[1,3]的最小值;

2)如果fx)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)某產(chǎn)品16月份銷售量及其價(jià)格進(jìn)行調(diào)查,其售價(jià)x和銷售量y之間的一組數(shù)據(jù)如下表所示:

月份i

1

2

3

4

5

6

單價(jià)(元)

9

9.5

10

10.5

11

8

銷售量(件)

11

10

8

6

5

14

1)根據(jù)15月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;

2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?

3)預(yù)計(jì)在今后的銷售中,銷售量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是2.5/件,為獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷售收入-成本).

參考公式:回歸方程,其中.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合,,分別從集合中隨機(jī)取一個(gè)元素.點(diǎn)落在直線為事件,若事件的概率最大,則的取值可能是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:ab0)的兩個(gè)焦點(diǎn)分別為F1(-,0)、F2,0.點(diǎn)M10)與橢圓短軸的兩個(gè)端點(diǎn)的連線相互垂直.

1)求橢圓C的方程;

2)已知點(diǎn)N的坐標(biāo)為(3,2),點(diǎn)P的坐標(biāo)為(mn)(m≠3.過點(diǎn)M任作直線l與橢圓C相交于A、B兩點(diǎn),設(shè)直線AN、NPBN的斜率分別為k1、k2k3,若k1k32k2,試求m,n滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一間宿舍內(nèi)住有甲乙兩人,為了保持宿舍內(nèi)的干凈整潔,他們每天通過小游戲的方式選出一人值日打掃衛(wèi)生,游戲規(guī)則如下:第1天由甲值日,隨后每天由前一天值日的人拋擲兩枚正方體骰子(點(diǎn)數(shù)為),若得到兩枚骰子的點(diǎn)數(shù)之和小于10,則前一天值日的人繼續(xù)值日,否則當(dāng)天換另一人值日.從第2天開始,設(shè)“當(dāng)天值日的人與前一天相同”為事件.

1)求.

2)設(shè)表示“第天甲值日”的概率,則,其中,.

)求關(guān)于的表達(dá)式.

)這種游戲規(guī)則公平嗎?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在疫情防控過程中,某醫(yī)院一次性收治患者127.在醫(yī)護(hù)人員的精心治療下,第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果從第16天開始,每天出院的人數(shù)是前一天出院人數(shù)的2倍,那么第19天治愈出院患者的人數(shù)為_______________,第_______________天該醫(yī)院本次收治的所有患者能全部治愈出院.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足 .

(1)證明:當(dāng)時(shí),

(2)證明: ();

(3)證明:為自然常數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案