【題目】執(zhí)行如圖所示的偽代碼,輸出i的值為

【答案】7
【解析】解:模擬執(zhí)行如圖所示的偽代碼,如下; i=1,S=0,滿足條件S<20,執(zhí)行循環(huán):
S=2×0+3=3,i=3,滿足條件S<20,執(zhí)行循環(huán):
S=2×3+3=9,i=5,滿足條件S<20,執(zhí)行循環(huán):
S=2×9+3=21,i=7,不滿足條件S<20,終止循環(huán);
輸出i的值為7.
所以答案是:7.
【考點精析】本題主要考查了莖葉圖的相關(guān)知識點,需要掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量單位:噸,將數(shù)據(jù)按照,分成9組,制成了如圖所示的頻率分布直方圖.

(1)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù)說明理由;

(2)估計居民月均用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sinωxcosωx﹣ (ω>0)圖象的兩條相鄰對稱軸為
(1)求函數(shù)y=f(x)的對稱軸方程;
(2)若函數(shù)y=f(x)﹣ 在(0,π)上的零點為x1 , x2 , 求cos(x1﹣x2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若集合A{x|2x3},B{x|x+2)(xa)<0},則a1”AB____條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=m﹣|2﹣x|,且f(x+2)>0的解集為(﹣1,1).
(1)求m的值;
(2)若正實數(shù)a,b,c,滿足a+2b+3c=m.求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研課題組通過一款手機APP軟件,調(diào)查了某市1000名跑步愛好者平均每周的跑步量(簡稱“周跑量”),得到如下的頻數(shù)分布表

周跑量(km/周)

人數(shù)

100

120

130

180

220

150

60

30

10

(1)在答題卡上補全該市1000名跑步愛好者周跑量的頻率分布直方圖:

注:請先用鉛筆畫,確定后再用黑色水筆描黑

(2)根據(jù)以上圖表數(shù)據(jù)計算得樣本的平均數(shù)為,試求樣本的中位數(shù)(保留一位小數(shù)),并用平均數(shù)、中位數(shù)等數(shù)字特征估計該市跑步愛好者周跑量的分布特點

(3)根據(jù)跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價格不一樣,如下表:

周跑量

小于20公里

20公里到40公里

不小于40公里

類別

休閑跑者

核心跑者

精英跑者

裝備價格(單位:元)

2500

4000

4500

根據(jù)以上數(shù)據(jù),估計該市每位跑步愛好者購買裝備,平均需要花費多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)當(dāng)時,求的最小值;

(2)設(shè)函數(shù)恰有兩個零點,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),則下列說法不正確的是( )

A.其圖象開口向上,且始終與軸有兩個不同的交點

B.無論取何實數(shù),其圖象始終過定點

C.其圖象對稱軸的位置沒有確定,但其形狀不會因的取值不同而改變

D.函數(shù)的最小值大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中, 已知圓 ,橢圓 ,為橢圓右頂點.過原點且異于坐標軸的直線與橢圓交于兩點,直線與圓的另一交點為,直線與圓的另一交點為,其中.設(shè)直線的斜率分別為

1)求的值;

2)記直線的斜率分別為,是否存在常數(shù),使得?若存在,求值;若不存在,說明理由;

3)求證:直線必過點

查看答案和解析>>

同步練習(xí)冊答案