選修4-1:幾何證明選講
如圖,D,E分別為△ABC的邊AB,AC上的點(diǎn),且不與△ABC的頂點(diǎn)重合.已知AE的長為m,AC的長為n,AD,AB的長是關(guān)于x的方程x2-14x+mn=0的兩個(gè)根.
(Ⅰ)證明:C,B,D,E四點(diǎn)共圓;
(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圓的半徑.
(I)連接DE,根據(jù)題意在△ADE和△ACB中,
AD×AB=mn=AE×AC,
AD
AC
=
AE
AB

又∠DAE=∠CAB,從而△ADE△ACB
因此∠ADE=∠ACB
∴C,B,D,E四點(diǎn)共圓.
(Ⅱ)m=4,n=6時(shí),方程x2-14x+mn=0的兩根為x1=2,x2=12.
故AD=2,AB=12.
取CE的中點(diǎn)G,DB的中點(diǎn)F,分別過G,F(xiàn)作AC,AB的垂線,兩垂線相交于H點(diǎn),連接DH.
∵C,B,D,E四點(diǎn)共圓,
∴C,B,D,E四點(diǎn)所在圓的圓心為H,半徑為DH.
由于∠A=90°,故GHAB,HFAC.HF=AG=5,DF=
1
2
(12-2)=5.
故C,B,D,E四點(diǎn)所在圓的半徑為5
2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖,已知四邊形ABCD是等腰梯形,E、F分別是腰AD、BC的中點(diǎn),M、N在線段EF上且EM=MN=NF,下底是上底的2倍,若,求
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,ABCD是平行四邊形,則圖中與△DEF相似的三角形共有( ).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點(diǎn)B作射線BBlAC.動(dòng)點(diǎn)D從點(diǎn)A出發(fā)沿射線AC方向以每秒5個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E從點(diǎn)C出發(fā)沿射線AC方向以每秒3個(gè)單位的速度運(yùn)動(dòng).過點(diǎn)D作DH⊥AB于H,過點(diǎn)E作EF⊥AC交射線BB1于F,G是EF中點(diǎn),連接DG.設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),AD=AB,并求出此時(shí)DE的長度;
(2)當(dāng)△DEG與△ACB相似時(shí),求t的值;
(3)以DH所在直線為對(duì)稱軸,線段AC經(jīng)軸對(duì)稱變換后的圖形為A′C′.
①當(dāng)t>
3
5
時(shí),連接C′C,設(shè)四邊形ACC′A′的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
②當(dāng)線段A′C′與射線BB,有公共點(diǎn)時(shí),求t的取值范圍(寫出答案即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC的角平分線AD的延長線交它的外接圓于點(diǎn)E.
(1)證明:△ABE△ADC;
(2)若△ABC的面積S=
1
2
AD•AE,求∠BAC的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB為⊙O的直徑,弦AC、BD交于點(diǎn)P,若AB=3,CD=1,則sin∠APD的值為( 。
A.
1
3
B.
2
3
C.
2
3
D.
2
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,PC與圓O相切于點(diǎn)C,直線PO交圓O于A,B兩點(diǎn),弦CD垂直AB于E.則下面結(jié)論中,錯(cuò)誤的結(jié)論是( 。
A.△BEC△DEAB.∠ACE=∠ACPC.DE2=OE•EPD.PC2=PA•AB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

網(wǎng)絡(luò)上流行一種“QQ農(nóng)場游戲”,這種游戲通過虛擬軟件模擬種植與收獲的過程.為了了解本班學(xué)生對(duì)此游戲的態(tài)度,高三(6)班計(jì)劃在全班60人中展開調(diào)查,根據(jù)調(diào)查結(jié)果,班主任計(jì)劃采用系統(tǒng)抽樣的方法抽取若干名學(xué)生進(jìn)行座談,為此先對(duì)60名學(xué)生進(jìn)行編號(hào)為:01,02,03,…60,已知抽取的學(xué)生中最小的兩個(gè)編號(hào)為03,09,則抽取的學(xué)生中最大的編號(hào)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,E是⊙O內(nèi)接四邊形 ABCD兩條對(duì)角線的交點(diǎn),CD延長線與過 A點(diǎn)的⊙O的切線交于F點(diǎn),若∠ABD=440,∠AED=1000, , 則∠AFC的度數(shù)為(        )
A.780B.920C.560D.1450

查看答案和解析>>

同步練習(xí)冊(cè)答案