【題目】已知圓.

(1)求證對(duì)任意實(shí)數(shù),該圓恒過(guò)一定點(diǎn);

(2)若該圓與圓切,求的值.

【答案】(1)詳見(jiàn)解析(2)

【解析】

試題分析:(1)將a分離,可得,對(duì)任意實(shí)數(shù)a成立,則,由此可得結(jié)論;(2)利用兩圓外切,內(nèi)切,分別求出a的值,即可得到結(jié)論

試題解析:(1)將圓的方程整理為(x2+y2-20)+a(-4x+2y+20)=0,…………3分

可得所以該圓恒過(guò)定點(diǎn)(4,-2).…………6分

(2)圓的方程可化為(x-2a)2+(y+a)25a220a+20=5(a-2)2,

所以圓心為(2a,a),半徑為|a-2|. …………8分

兩圓外切, =2+|a-2|,

|a|=2+|a-2|,…………10分

由此解得a=1+ .

兩圓切時(shí)a=1+ …………12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩枚大小相同、質(zhì)地均勻的正四面體玩具,每個(gè)玩具的各個(gè)面上上分別寫(xiě)著數(shù)字1,2,3,5,同時(shí)投擲這兩枚玩具一次,記為兩個(gè)朝下的面上的數(shù)字之和.

1)求事件不小于6”的概率;

2為奇數(shù)的概率和為偶數(shù)的概率是不是相等?證明你作出的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子中,放有標(biāo)號(hào)分別為,,,的四個(gè)大小相同的小球,現(xiàn)從這個(gè)盒子中,有放回地先后取得兩個(gè)小球,其標(biāo)號(hào)分別為

1)求事件的概率;

(2)求事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某品牌茶壺的原售價(jià)為80元一個(gè),今有甲、乙兩家茶具店銷售這種茶壺,甲店用如下的方法促銷:如果只購(gòu)買一只茶壺,其價(jià)格為78元/個(gè);如果一次購(gòu)買兩個(gè)茶壺,其價(jià)格為76元/個(gè);;如果一次購(gòu)買的茶壺?cái)?shù)每增加一個(gè),那么茶壺的價(jià)格減少2元/個(gè),但茶壺的售價(jià)不得低于44元/個(gè)。乙店一律按原價(jià)的75%銷售,F(xiàn)某茶社要購(gòu)買這種茶壺個(gè),如果全部在甲店購(gòu)買,則所需金額為元;如果全部在乙店購(gòu)買,則所需金額為元。

(1)分別求出、之間的函數(shù)關(guān)系式。

(2)該茶社去哪家茶具店購(gòu)買茶壺花費(fèi)較少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是四棱錐的直觀圖,其正(主)視圖和側(cè)(左)視圖均為直角三角形,俯視圖外框?yàn)榫匦,相關(guān)數(shù)據(jù)如圖2所示.

(1)設(shè)中點(diǎn)為,在直線上找一點(diǎn),使得平面,并說(shuō)明理由;

(2)若二面角的平面角的余弦值為,求四棱錐的外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位有、三個(gè)工作點(diǎn),需要建立一個(gè)公共無(wú)線網(wǎng)絡(luò)發(fā)射點(diǎn),使得發(fā)射點(diǎn)到三個(gè)工作點(diǎn)的距離相等.已知這三個(gè)工作點(diǎn)之間的距離分別為,,.假定、、四點(diǎn)在同一平面內(nèi).

)求的大。

)求點(diǎn)到直線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角三角形的頂點(diǎn)坐標(biāo),直角頂點(diǎn),頂點(diǎn)軸上,點(diǎn)為線段的中點(diǎn),三角形外接圓的圓心為

(1)求邊所在直線方程;

(2)求圓的方程;

(3)直線過(guò)點(diǎn)且傾斜角為,求該直線被圓截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)個(gè)紅包,每個(gè)紅包金額為元,已知在每輪游戲中所產(chǎn)生的個(gè)紅包金額的頻率分布直方圖如圖所示

1的值,并根據(jù)頻率分布直方圖,估計(jì)紅包金額的眾數(shù);

2以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個(gè)紅包,其中金額在的紅包個(gè)數(shù)為,求的分布列和期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求不等式的解集;

(2)對(duì)任意,若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案