【題目】已知圓經(jīng)過(guò)點(diǎn),和直線相切,且圓心在直線上.

(1)求圓的方程;

(2)已知直線經(jīng)過(guò)原點(diǎn),并且被圓截得的弦長(zhǎng)為2,求直線的方程.

【答案】(1) (2)

【解析】試題分析:(1)由題可知,根據(jù)圓心在直線上,可將圓心設(shè)為,圓心與點(diǎn)的距離為半徑,并且圓心到切線的距離也是半徑,根據(jù)此等量關(guān)系,可得出,由此可求圓的方程;(2)由題可知,直線的斜率是否存在不可知,故需要分類(lèi)討論,當(dāng)直線的斜率不存在時(shí),可直接得到直線方程,當(dāng)直線的斜率存在時(shí),設(shè)直線方程為,由弦長(zhǎng)公式可得,由此即可求得到直線的方程.

試題解析:解:(1)設(shè)圓心的坐標(biāo)為,

,化簡(jiǎn)得,解得

,半徑

C的方程為

2當(dāng)直線的斜率不存在時(shí),直線的方程為,此時(shí)直線l被圓C截得的弦長(zhǎng)為2,滿足條件。

當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,由題得,解得,直線 的方程為

綜上所述:直線l的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,AD⊥平面PAB,AP⊥AB.
(1)求證:CD⊥AP;
(2)若CD⊥PD,求證:CD∥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)已知函數(shù).

(Ⅰ)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(Ⅱ)若存在唯一整數(shù),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系內(nèi)三點(diǎn).

(1) 求過(guò)三點(diǎn)的圓的方程,并指出圓心坐標(biāo)與圓的半徑;

(2)求過(guò)點(diǎn)與條件 (1) 的圓相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們經(jīng)濟(jì)收入的不斷增長(zhǎng),個(gè)人購(gòu)買(mǎi)家庭轎車(chē)已不再是一種時(shí)尚.車(chē)的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會(huì)增長(zhǎng)多少,一直是購(gòu)車(chē)一族非常關(guān)心的問(wèn)題.某汽車(chē)銷(xiāo)售公司做了一次抽樣調(diào)查,并統(tǒng)計(jì)得出某款車(chē)的使用年限(單位:年)與所支出的總費(fèi)用(單位:萬(wàn)元)有如下的數(shù)據(jù)資料:

使用年限

2

3

4

5

6

總費(fèi)用

2.2

3.8

5.5

6.5

7.0

若由資料知對(duì)呈線性相關(guān)關(guān)系.

線性回歸方程系數(shù)公式:,.

1)試求線性回歸方程的回歸系數(shù);

(2)當(dāng)使用年限為10年時(shí),估計(jì)車(chē)的使用總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)求f(x)的極值;
(2)當(dāng)0<x<e時(shí),求證:f(e+x)>f(e﹣x);
(3)設(shè)函數(shù)f(x)圖象與直線y=m的兩交點(diǎn)分別為A(x1 , f(x1)、B(x2 , f(x2)),中點(diǎn)橫坐標(biāo)為x0 , 證明:f'(x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實(shí)數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)f(x)=sin2x的圖象沿x軸向右平移φ(φ>0)個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖象,若函數(shù)g(x)的圖象關(guān)于y軸對(duì)稱(chēng),則當(dāng)φ取最小的值時(shí),g(0)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(1)若曲線處的切線與直線平行,求的值;

(2)若對(duì)于任意,都有恒成立,求的取值范圍.

(3)若對(duì)于任意,都有成立,求整數(shù)的最大值.

(其中為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案