【題目】(2015·湖南)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,a=btanA,
(1)證明:sinB=cosA
(2)若sinC-sinAcosB=,且B為鈍角,求A,B,C

【答案】
(1)

略。


(2)

A=30°, B=120°,C=30°。


【解析】
由a=btanA正弦定理,=,所以sinB=cosA.
=sin(A+B)-sinAcosB=sinAcosB+cosAsinB-sinAcosB=cosAsinB=, 有(I)知sinB=cosA, 因此sin2B=,又B為鈍角,所以sinB=,故B=120°,由cosA=sinB=知A=30°,從而C=180°-(A+B)=30°, 綜上所述,A=30°, B=120°,C=30°。
(II)因?yàn)閟inC-sinAcosB=sin[180°-(A+B)-sinAcosB.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正弦定理的定義的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握正弦定理:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了解用戶(hù)對(duì)其產(chǎn)品的滿(mǎn)意度,從A,B兩地區(qū)分別隨機(jī)調(diào)查了20個(gè)用戶(hù),得到用戶(hù)對(duì)產(chǎn)品的滿(mǎn)意度平分如下:
A地區(qū):62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
B地區(qū):73 83 62 51 91 46 53 73 64 82
93 48 65 81 74 56 54 76 65 79
(1)(I)根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的莖葉圖,并通過(guò)莖葉圖比較兩地區(qū)滿(mǎn)意度評(píng)分的平均值及分散程度(不要求計(jì)算出具體值,得出結(jié)論即可)
(2)(II)根據(jù)用戶(hù)滿(mǎn)意度評(píng)分,將用戶(hù)的滿(mǎn)意度從低到高分為三個(gè)等級(jí):

  • 滿(mǎn)意度評(píng)分
  • 低于70分
  1. 70分到89分
  • 不低于90分
  • 滿(mǎn)意度等級(jí)
  • 不滿(mǎn)意
  • 滿(mǎn)意
  • 非常滿(mǎn)意

記時(shí)間C:“A地區(qū)用戶(hù)的滿(mǎn)意度等級(jí)高于B地區(qū)用戶(hù)的滿(mǎn)意度等級(jí)”,假設(shè)兩地區(qū)用戶(hù)的評(píng)價(jià)結(jié)果相互獨(dú)立。根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求C的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·四川)一個(gè)正方體的平面展開(kāi)圖及該正方體的直觀圖的示意圖如圖所示,在正方體中,設(shè)BC的中點(diǎn)為M,GH的中點(diǎn)為N.

(1)請(qǐng)將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需說(shuō)明理由)
(2)證明:直線(xiàn)MN∥平面BDH。
(3)求二面角A-EG-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·陜西)隨機(jī)抽取一個(gè)年份,對(duì)西安市該年4月份的天氣情況進(jìn)行統(tǒng)計(jì),結(jié)果如下:

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

天氣

日期

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

天氣


(1)在4月份任取一天,估計(jì)西安市在該天不下雨的概率;
(2)西安市某學(xué)校擬從4月份的一個(gè)晴天開(kāi)始舉行連續(xù)兩天的運(yùn)動(dòng)會(huì),估計(jì)運(yùn)動(dòng)會(huì)期間不下雨的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),函數(shù),則方程實(shí)數(shù)解的個(gè)數(shù)是( .

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若a,b 是函數(shù) 的兩個(gè)不同的零點(diǎn),且a,b,-2 這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則p+q 的值等于( )
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)調(diào)查了某班全部45名同學(xué)參加書(shū)法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)
被選中且未被選中的概率.

參加書(shū)法社團(tuán)

未參加書(shū)法社團(tuán)

參加演講社團(tuán)

8

5

未參加演講社團(tuán)

2

30

(1)從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加一個(gè)社團(tuán)的概率;
(2)在既參加書(shū)法社團(tuán)又參加演講社團(tuán)的8名同學(xué)中,有5名男同學(xué)A1 , A2 , A3 , A4 , A5 , 3名女同學(xué)B1 , B2 , B3 . 現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,求A1被選中且B1未被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元。該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿(mǎn)足關(guān)系:Cx=若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元。設(shè)fx)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。

)求k的值及f(x)的表達(dá)式。

)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m,n是兩條不同直線(xiàn),,是兩個(gè)不同平面,則下列命題正確的是
A.若垂直于同一平面,則平行
B.若m,n平行于同一平面,則m與n平行
C.若,不平行,則在內(nèi)不存在與平行的直線(xiàn)
D.若m,n不平行,則m與n不可能垂直于同一平面

查看答案和解析>>

同步練習(xí)冊(cè)答案